Assessing the Quality of the Management of Degree Programs by Latent Class Analysis

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


In the evaluation of university quality, questionnaires with multi-item scales (Likert type) are often used in order to measure specific characteristics which are known to be relevant for the evaluation. The joint distribution of multiple responses provides a complete information in order to attach an overall measure of perceived quality to each student.


Latent Class Latent Class Analysis Degree Program Class Membership Composite Indicator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agresti A (2002) Categorical data analysis. Wiley-Intersciencie, Hoboken, NJCrossRefGoogle Scholar
  2. 2.
    Bartholomew DJ (1998) Scaling unobservable constructs in social science. Appl Stat 47:1–13Google Scholar
  3. 3.
    Bartholomew DJ, Knott M (1999) Latent variable models and factor analysis. Kendall’s Library of statistics. Hodder Arnold, LondonGoogle Scholar
  4. 4.
    Barholomew DJ, Steele F, Galbraith JI, Moustaki I (2002) The analysis and interpretation of multivariate analysis for social scientists. Chapman & Hall, Boca Raton, FLGoogle Scholar
  5. 5.
    Bayol MP, de la Foye A, Tellier C, Tenenhaus M (2000) Use of PLS path modelling to estimate the European consumer satisfaction index (ECSI) model. Stat Appl 12:361–375Google Scholar
  6. 6.
    Bernardi L, Capursi V, Librizzi L (2004) Measurement awareness: the use of indicators between expectations and opportunities. In: Atti XLII Convegno della Società Italiana di Statistica, Bari, 9–11 Giugno 2004. CLEUP, PadovaGoogle Scholar
  7. 7.
    Capursi V, Porcu M (2001) La didattica universitaria valutata dagli studenti: un indicatore basato su misure di distanza fra distribuzioni di giudizi. In: Atti Convegno Intermedio della Societ Italiana di Statistica ‘Processi e Metodi Statistici di Valutazione’, Roma 4–6 Giugno 2001. Società Italiana di StatisticaGoogle Scholar
  8. 8.
    Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometrika 16:297–334CrossRefGoogle Scholar
  9. 9.
    Hagenaars JA, McCutcheon AL (2002) Applied latent class analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Joreskög KG, Sorbom D (1979) Advances in factor analysis and structural equation models. Abt Books, Cambridge, MAGoogle Scholar
  11. 11.
    Leti G (1983) Statistica Descrittiva. il Mulino, BolognaGoogle Scholar
  12. 12.
    Linzer DA, Lewis J (2007) poLCA: Polytomous variable latent class analysis. R package version 1.1.∼dlinzer/poLCA
  13. 13.
    Linzer DA, Lewis J (forthcoming) poLCA: An R Package for Polytomous variable latent class analysis. Journal of Statiscal SoftwareGoogle Scholar
  14. 14.
    Moustaki I, Knott D (2000) Generalized latent trait models. Psychometrika 65:391–411CrossRefGoogle Scholar
  15. 15.
    Rampichini C, Grilli L, Petrucci A (2004) Analysis of university course evaluations: from descriptive measures to multilevel models. Stat Methods Appl 13:357–371Google Scholar
  16. 16.
    Rasch G (1960) Probabilistic models for some intelligence and attainment tests. MESA Press, Chicago, ILGoogle Scholar
  17. 17.
    Sulis I (2007) Measuring students’ assessments of ‘university course quality’ using mixed-effects models. PhD thesis, Università degli Studi di Palermo, PalermoGoogle Scholar
  18. 18.
    Wold H (1966) Estimation of principal components and related models by iterative least squares. In: Krishnaiaah PR (ed) Multivariate analysis. Academic Press, New York, NY, pp 391–420Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Dipartimento di Ricerche Economiche e SocialiUniversità degli Studi di CagliariCagliariItaly
  2. 2.Dipartimento di Ricerche Economiche e SocialiUniversità di CagliariCagliariItaly

Personalised recommendations