Complex Networks Analysis of Customer Networks

  • Andreas Kemper
Part of the Contributions to Management Science book series (MANAGEMENT SC.)


Complex networks theory incites the formulation of the hypotheses for customer network-centric valuation in software markets. In this chapter the respective hypo- theses are investigated from a complex networks perspective supported by the developed simulator. The main research areas of interest for valuation in software markets are investigated. These comprise diffusion dynamics in varying network topologies, scaling properties and network topologies of customer networks, contributions to valuation in software markets, and limitations due to the social nature of customer networks. These research topics are pursued in the following sections.


Network Topology Cluster Coefficient Random Network Network Effect Average Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert, R. (2001). Statistical Mechanics of Complex Networks. Ph. D. book, University of Notre Dame.Google Scholar
  2. Alfarano, S., & Milakovic, M. (2008). Should network structure matter in agent-based finance? Economics working papers of Christian-Albrechts-University of Kiel04, 1–32.Google Scholar
  3. Barabasi, A., Albert, R., Jeong, H., & Bianconi, G. (2000). Power-law distribution of the world wide web. Science,287, 2115a.CrossRefGoogle Scholar
  4. Blanchard, P., Chang, C., & Krueger, T. (2002). Epidemic thresholds on scale-free graphs: The interplay between exponent and preferential choice. Preprint cond-mat/0207319, 0207319.Google Scholar
  5. Boccara, N., & Fuks, H. (2003). Modeling diffusion dynamics with probablistic cellular automata. arXiv:adap-org/9805004v1.Google Scholar
  6. Boguna, M., Pastor-Satorras, R., & Vespignani, A. (2002). Absence of epidemic threshold in scale-free networks with connectivity correlations. Preprint cond-mat/0208163, 0208163.Google Scholar
  7. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Ra-jagopalan, S., Stata, R., Tomkins, A., & Wiener, J. (2000). Graph structure in the web. Computer Networks,33, 309–320.CrossRefGoogle Scholar
  8. Davis, G., & Greve, H. (1997). Corporate elite networks and governance changes in the 1980s. American Journal of Sociology,103, 1–37.CrossRefGoogle Scholar
  9. Dodds, P., Muhamad, R., & Watts, D. (2003). An experimental study of search in global social networks. Science,301, 827–829.CrossRefGoogle Scholar
  10. Eguiluz, V., & Klemm, K. (2002). Epidemic threshold in structured scale-free networks. Physical Review Letters,89, 108701.CrossRefGoogle Scholar
  11. Erdos, P., & Renyi, A. (1959). On random graphs. Publicationes Mathematicae,6, 290–297.Google Scholar
  12. Galaskiewicz, J., & Marsden, P. (1978). Interorganizational resource networks: Formal patterns of overlap. Social Science Research,7, 89–107.CrossRefGoogle Scholar
  13. Garfield, E. (1979). It’s a small world after all. Current Contents,43, 5–10.Google Scholar
  14. Guare, J. (1990). Six degrees of separation: A play. New York: Vintage.Google Scholar
  15. Hommel, U., & Kemper, A. (2006). Handbuch Unternehmensrestrukturierung, Chapter Sicherung der Netzwerkintegritt in der Unternehmenssanierung, pp. 625–644. Gabler.Google Scholar
  16. Kogut, B., & Walker, G. (2003). Restructuring or disintegration of the german corporate network: Globalization as a fifth column. William Davidson Institute, Working Paper591.Google Scholar
  17. Leskovec, J., & Horvitz, E. (2008). Planetary-scale views on an instant-messaging network. arXiv:0803.0939v1.Google Scholar
  18. Mariolis, P. (1975). Interlocking directorates and control of cor- porations: The theory of bank control. Social Science Quarterly,56, 425–439.Google Scholar
  19. May, R., & Anderson, R. (1988). The transmission dynamics of human immunodeficiency virus (hiv). Philosphical Transactions of the Royal Society of London B,321, 565607.Google Scholar
  20. Milgram, S. (1967). The small world problem. Psychology Today,2, 60–67.Google Scholar
  21. Mizruchi, M. (1982). The American Corporate Network. Beverley Hills: Sage.Google Scholar
  22. Newman, M. (2003a). Mixing patterns in networks. Physical Review E,67(2), 026126.CrossRefGoogle Scholar
  23. Pastor-Satorras, R., & Vespignani, A. (2001a). Epidemic dynamics and endemic states in complex networks. Physical Review E,63, 066117.CrossRefGoogle Scholar
  24. Pastor-Satorras, R., & Vespignani, A. (2003). Handbook of Graphs and Networks, Chapter Epidemics and immunization in scale-free networks. Berlin: Wiley-VCH.Google Scholar
  25. Sattenspiel, L., & Simon, C. (1988). The spread and persistence of infectious diseases in structured populations. Mathematical Biosciences90, 367–383.Google Scholar
  26. Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry,32, 425–443.CrossRefGoogle Scholar
  27. Valente, T., & Davis, R. (1999). Accelerating the diffusion of innovations using opinion leaders. Annals of the American Academy,566, 55–67.CrossRefGoogle Scholar
  28. von Westarp, F. (2003). Modeling Software Markets - Empirical Analysis, Network Simulations, and Marketing Implications. Heidelberg: Springer.Google Scholar
  29. Warren, C., & Sokolov, L. S. I. (2002). Geography in a scale-free network model. Physical Review E,66, 056105.CrossRefGoogle Scholar
  30. Watts, D. (1999). Small worlds: the dynamics of networks between order and randomness. Princeton: Princeton University Press.Google Scholar
  31. Watts, D., & Strogatz, S. (1998). Collective dynamics of ’small-world’ networks. Nature,393, 440–442.CrossRefGoogle Scholar
  32. Xing (2007a). Annual Report 2007. Xing AG.Google Scholar
  33. Xing (2007b). Kommunikation und Networking im Internet: 3. Internationale XING-Studie. Xing AG.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.FrankfurtGermany

Personalised recommendations