Estimating Frontier Cost Models Using Extremiles

  • Abdelaati Daouia
  • Irène Gijbels


In the econometric literature on the estimation of production technologies, there has been considerable interest in estimating so called cost frontier models that relate closely to models for extreme non-standard conditional quantiles (Aragon et al. Econ Theor 21:358–389, 2005) and expected minimum input functions (Cazals et al. J Econometrics 106:1–25, 2002). In this paper, we introduce a class of extremile-based cost frontiers which includes the family of expected minimum input frontiers and parallels the class of quantile-type frontiers. The class is motivated via several angles, which reveals its specific merits and strengths. We discuss nonparametric estimation of the extremile-based costs frontiers and establish asymptotic normality and weak convergence of the associated process. Empirical illustrations are provided.


Cost Function Joint Density Tail Index Stochastic Frontier Model Free Disposal Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the French “Agence Nationale pour la Recherche” under grant ANR-08-BLAN-0106-01/EPI project (Abdelaati Daouia) and the Research Fund KULeuven (GOA/07/04-project) and by the IAP research network P6/03, Federal Science Policy, Belgium (Irène Gijbels).


  1. Aragon, Y., Daouia, A., & Thomas-Agnan, C. (2005). Nonparametric frontier estimation: a conditional quantile-based approach. Econometric Theory, 21, 358–389.MathSciNetMATHCrossRefGoogle Scholar
  2. Cazals, C., Florens, J. P., & Simar, L. (2002). Nonparametric frontier estimation: a robust approach. Journal of Econometrics, 106, 1–25.MathSciNetMATHCrossRefGoogle Scholar
  3. Chan, L. K. (1967). On a characterization of distributions by expected values of extreme order statistics. American Mathematical Monthly, 74, 950–951.MathSciNetMATHCrossRefGoogle Scholar
  4. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the inefficiency of decision making units. European Journal of Operational Research, 2, 429–444.MathSciNetMATHCrossRefGoogle Scholar
  5. Daouia, A., Florens, J.-P., & Simar, L. (2008). Functional convergence of quantile-type frontiers with application to parametric approximations. Journal of Statistical Planning and Inference, 138, 708–725.MathSciNetMATHCrossRefGoogle Scholar
  6. Daouia, A., Florens, J.-P., & Simar, L. (2010). Frontier estimation and extreme value theory. Bernoulli, 16(4), 1039–1063.MathSciNetMATHCrossRefGoogle Scholar
  7. Daouia, A., & Gijbels, I. (2009). Extremiles, manuscript.Google Scholar
  8. Daouia, A., & Gijbels, I. (2011). Robustness and inference in nonparametric partial-frontier modeling. Journal of Econometrics, 161, 147–165.MathSciNetCrossRefGoogle Scholar
  9. Daouia, A., & Simar, L. (2007). Nonparametric efficiency analysis: a multivariate conditional quantile approach. Journal of Econometrics, 140(2), 375–400.MathSciNetMATHCrossRefGoogle Scholar
  10. Debreu, G. (1951). The coefficient of resource utilization. Econometrica, 19(3), 273–292.MATHCrossRefGoogle Scholar
  11. Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor inefficiency in post offices. In M. Marchand, P. Pestieau, & H. Tulkens (Eds.) The performance of public enterprises: concepts and measurements (pp. 243–267). Amsterdam: North-Holland.Google Scholar
  12. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A, 120, 253–281.CrossRefGoogle Scholar
  13. Gijbels, I., Mammen, E., Park, B. U., & Simar, L. (1999). On estimation of monotone and concave frontier functions. Journal of the American Statistical Association, 94(445), 220–228.MathSciNetMATHCrossRefGoogle Scholar
  14. Koopmans, T. C. (1951). An analysis of production as an efficient combination of activities. In T.C. Koopmans (Ed.) Activitity analysis of production and allocation, Cowles Commission for Research in Economics, Monograph 13. New York: Wiley.Google Scholar
  15. Park, B., Simar, L., & Weiner, Ch. (2000). The FDH estimator for productivity efficiency scores: asymptotic properties. Econometric Theory, 16, 855–877.MathSciNetMATHCrossRefGoogle Scholar
  16. Serfling, R. J. (1980). Approximation theorems of mathematical statistics. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.MATHCrossRefGoogle Scholar
  17. Shephard, R. W. (1970). Theory of cost and production function. Princeton, New-Jersey: Princeton University Press.Google Scholar
  18. Shorack, G. R. (2000). Probability for statisticians. New York: Springer.MATHGoogle Scholar
  19. Simar, L., & Wilson, P. (2008). Statistical inference in nonparametric frontier models: recent developments and perspectives. In Harold O. Fried, C.A. Knox Lovell, & Shelton S. Schmidt (Eds.) The measurement of productive efficiency, 2nd edn. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Toulouse School of Economics (GREMAQ)University of ToulouseToulouseFrance
  2. 2.Department of Mathematics and Leuven Statistics Research CenterKatholieke Universiteit LeuvenLeuven (Heverlee)Belgium

Personalised recommendations