Penalty Specialists Among Goalkeepers: A Nonparametric Bayesian Analysis of 44 Years of German Bundesliga


Penalty saving abilities are of major importance for a goalkeeper in modern football. However, statistical investigations of the performance of individual goalkeepers in penalties, leading to a ranking or a clustering of the keepers, are rare in the scientific literature. In this paper we will perform such an analysis based on all penalties in the German Bundesliga from 1963 to 2007. A challenge when analyzing such a data set is the fact that the counts of penalties for the different goalkeepers are highly imbalanced, leading to the question on how to compare goalkeepers who were involved in a disparate number of penalties. We will approach this issue by using Bayesian hierarchical random effects models. These models shrink the individual goalkeepers estimates towards an overall estimate with the degree of shrinkage depending on the amount of information that is available for each goalkeeper. The underlying random effects distribution will be modelled nonparametrically based on the Dirichlet process. Proceeding this way relaxes the assumptions underlying parametric random effect models and additionally allows to find clusters among the goalkeepers.


Markov Chain Monte Carlo Deviance Information Criterion Dirichlet Process Posterior Expectation Random Effect Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 2, 1152–1174 (1974)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Diaconis, P., Ylvisaker, D.: Quantifying prior opinion. In: Bernardo, J., DeGroot, M., Lindley, D., Smith, A. (eds.) Bayesian Statistics 2, pp. 133–156. Elsevier, Amsterdam (1985)Google Scholar
  3. 3.
    Dunson, D.B., Yang, M., Baird, D.: Semiparametric Bayes hierarchical models with mean and variance constraints. Technical Report 2007–08, Department of Statistical Science, Duke University, Durham, NC, USA (2007)Google Scholar
  4. 4.
    Dunson, D.B.: Nonparametric Bayes applications to biostatistics. Technical Report 2008–06, Department of Statistical Science, Duke University, Durham (2008)Google Scholar
  5. 5.
    Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96, 161–173 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kropp, M., Trapp, A.: 35 Jahre Bundesliga-Elfmeter 1963–1999. Agon Statistics 36, 2nd edn. Agon-Sportverlag, Kassel (1999)Google Scholar
  8. 8.
    Kuhn, W.: Penaltykick strategies for shooters and goalkeepers. In: Reilly, K.D.T., Lees, A., Murphy, W. (eds.) Science and football, pp. 489–492. E&FN Spon, London (1988)Google Scholar
  9. 9.
    Kuss, O., Kluttig, A., Stoll, O.: The fouled player should not take the penalty himself: An empirical investigation of an old German football myth. J. Sport. Sci. 25, 963–967 (2007)CrossRefGoogle Scholar
  10. 10.
    Lau, J.W., Green, P.J.: Bayesian model-based clustering procedures. J. Com-put. Graph. Stat. 16, 526–558 (2007)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lin, R., Louis, T.A., Paddock, S.M., Ridgeway, G.: Loss function based ranking in two-stage hierarchical models. Bayesian Anal. 1, 915–946 (2006)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Loy, R.: Handlungsstrategien von Torhütern und Schützen in der Strafstoβsit-uation des Fuβballsports. In: Bäumler, G., Bauer, G. (eds.) Sportwissenschaft rund um den Fuβball, pp. 67–78. Schriften der Deutschen Vereinigung für Sportwissenschaft 96, Sankt Augustin (1988)Google Scholar
  13. 13.
    Morya, E., Ranvaud, R., Pinheiro, W.: Dynamics of visual feedback in a laboratory simulation of a penalty kick. J. Sport. Sci. 21, 87–95 (2003)CrossRefGoogle Scholar
  14. 14.
    Ohlssen, D.I., Sharples, L.D., Spiegelhalter, D.J.: Flexible random-effects models using Bayesian semi-parametric models: Applications to institutional comparisons. Stat. Med. 26, 2088–2112 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Savelsbergh, G., van der Kamp, J., Williams, A., Ward, P.: Anticipation and visual search behaviour in expert soccer goalkeepers. Ergonomics 48, 1686–1697 (2005)CrossRefGoogle Scholar
  16. 16.
    Savelsbergh, G., Williams, A., van der Kamp, J., Ward, P.: Visual search, anticipation and expertise in soccer goalkeepers. J. Sport Sci. 20, 279–287 (2002)CrossRefGoogle Scholar
  17. 17.
    Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650 (1994)MATHMathSciNetGoogle Scholar
  18. 18.
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian measures of model complexity and fit. J. Roy. Stat. Soc. B 64, 583–639 (2002)MATHCrossRefGoogle Scholar
  19. 19.
    Sturtz, S., Ligges, U., Gelman, A.: R2WinBUGS: A package for running WinBUGS from R. J. Stat. Softw. 12, 1–16 (2005)Google Scholar
  20. 20.
    Temme, N.M.: Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89, 233–243 (1993)MATHMathSciNetGoogle Scholar
  21. 21.
    Van der Kamp, J.: A field simulation study of the effectiveness of penalty kick strategies in soccer: Late alterations of kick direction increase errors and reduce accuracy. J. Sport. Sci. 24, 467–477 (2006)CrossRefGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2009

Authors and Affiliations

  1. 1.Fakultät StatistikTechnische Universität DortmundDortmundGermany
  2. 2.Institut für Medizinische EpidemiologieBiometrie und Informatik Martin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations