Advertisement

Ultimatum Games and Fuzzy Information

  • Philip Sander
  • Peter Stahlecker

Abstract

We consider the proposer's decision process in an ultimatum game where his uncertainty with respect to the responder's preferences and the associated acceptance threshold is modeled by a fuzzy set. Employing a three-step defuzzification strategy we determine the proposer's best possible claim which depends on his beliefs and his attitude towards risk. Furthermore, we derive an explicit solution for a specific class of fuzzy sets. From a more abstract point of view we analyze a game in which one player has a non-continuous objective function and where the uncertain point of discontinuity is determined by the other player's strategy.

Keywords

Membership Function Ultimatum Game Fuzzy Information Dictator Game Game Econ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, B.F., Größl, I., Stahlecker, P.: Competitive supply behaviour when price information is fuzzy. J. Econ.72, 45–66 (2000)MATHGoogle Scholar
  2. 2.
    Arnold, B.F., Hauenschild, N., Stahlecker, P.: Monopolistic price setting under fuzzy information. Eur. J. Oper. Res.154, 787–803 (2004)MATHCrossRefGoogle Scholar
  3. 3.
    Bandemer, H., Gottwald, S.: Fuzzy sets, fuzzy logic, fuzzy methods with applications. Wiley, New York (1995)MATHGoogle Scholar
  4. 4.
    Bolton, G.E.: A comparative model of bargaining: Theory and evidence. Am. Econ. Rev.81, 1096–1136 (1991)Google Scholar
  5. 5.
    Bolton, G.E., Ockenfels, A.: A Theory of equity, reciprocity and competition. Am. Econ. Rev.90, 166–194 (2000)Google Scholar
  6. 6.
    Camerer, C.: Behavioral game theory: Experiments in strategic interaction. Princeton University Press, Princeton (2003)MATHGoogle Scholar
  7. 7.
    Camerer, C., Thaler, R.H.: Ultimatums, dictators, manners. J. Econ. Persp.9, 209–219 (1995)Google Scholar
  8. 8.
    Charness, G., Rabin, M.: Understanding social preferences with simple tests. Q. J. Econ.117, 817–869 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Dufwenberg, M., Kirchsteiger, G.: A theory of sequential reciprocity. Games Econ. Behav.47, 268–298 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Falk, A., Fischbacher, U.: A theory of reciprocity. Games Econ. Behav.54, 293–315 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fehr, E., Schmidt, K.M.: A theory of fairness, competition and co-operation. Quart. J. Econ.114, 817–868 (1999)MATHCrossRefGoogle Scholar
  12. 12.
    Fischbacher, U., Gächter, S.: Heterogeneous social preferences and the dynamics of free riding in public goods. IZA Discussion paper2011(2006)Google Scholar
  13. 13.
    Forsythe, R., Horowitz, J.L., Savin, N.E., Sefton, M.: Fairness in simple bargaining experiments. Games Econ. Behav.6, 347–369 (1994)MATHCrossRefGoogle Scholar
  14. 14.
    Güth, W.: On ultimatum bargaining experiments — a personal view. J. Econ. Behav. Organ.27, 329–344 (1995)CrossRefGoogle Scholar
  15. 15.
    Güth, W., Schmittberger, R., Schwarze, B.: An experimental analysis of ultimatum bargaining. J. Econ. Behav. Organ.3, 367–388 (1982)CrossRefGoogle Scholar
  16. 16.
    Hauenschild, N., Stahlecker, P.: Precautionary saving and fuzzy information. Econ. Lett.70, 107–114 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    Hauenschild, N., Stahlecker, P.: Nash-Equilibria in a heterogeneous oligopoly with fuzzy information. Rev. Econ. Design8, 165–184 (2003)MATHCrossRefGoogle Scholar
  18. 18.
    Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H. (eds.) Foundations of human sociality. Oxford University Press, Oxford (2004)Google Scholar
  19. 19.
    Hoffman, E., McCabe, K., Smith, V.L.: Social distance and other-regarding behavior in Dictator Games. Am. Econ. Rev.86, 653–660 (1996)Google Scholar
  20. 20.
    Klir, G.J., Wierman, M.J.: Uncertainty-based information: Elements of generalized information theory. Physica, Heidelberg (1999)MATHGoogle Scholar
  21. 21.
    Levine, D.K.: Modeling altruism and spitefulness in experiments. Rev. Econ. Dyn.1, 593–622 (1998)CrossRefGoogle Scholar
  22. 22.
    Oosterbeek, H., Sloof, R., Van De Kuilen, G.: Cultural differences in ultimatum game experiments: evidence from a Meta-analysis. Exper. Econ.7, 171–188 (2004)MATHCrossRefGoogle Scholar
  23. 23.
    Rabin, M.: Incorporating fairness into game theory and economics. Am. Econ. Rev.83, 1281–1302 (1993)Google Scholar
  24. 24.
    Roth, A.E.: Bargaining Experiments. In: Kagel, J.H., Roth, A.E. (eds.) Handbook of experimental economics, pp. 253–348. Princeton University Press, Princeton (1995)Google Scholar
  25. 25.
    Roth, A.E., Prasnikar, V., Okuno-Fujiwara, M., Zamir, S.: Bargaining and market behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokyo: An experimental study. Am. Econ. Rev.81, 1068–1095 (1991)Google Scholar
  26. 26.
    Sobel, J.: Interdependent preferences and reciprocity. J. Econ. Lit.43, 392– 436 (2005)CrossRefGoogle Scholar
  27. 27.
    Stahlecker, P., Größl, I., Arnold, B.F.: Monopolistic competition and supply behaviour under fuzzy price information. Homo Oecon.15, 561–579 (1999)Google Scholar
  28. 28.
    Thaler, R.H.: Anomalies: the ultimatum game. J. Econ. Persp.2, 195–206 (1988)Google Scholar
  29. 29.
    Zimmermann, H.-J.: Fuzzy set theory — and its applications (4th edn.). Kluwer, Dordrecht (2001)Google Scholar

Copyright information

© Physica-Verlag Heidelberg 2009

Authors and Affiliations

  1. 1.Institut für Statistik und ÖkonometrieUniversität HamburgHamburgGermany

Personalised recommendations