Multiple Self-decomposable Laws on Vector Spaces and on Groups: The Existence of Background Driving Processes

  • Wilfried Hazod


Following K. Urbanik, we define for simply connected nilpotent Lie groups G multiple self-decomposable laws as follows: For a fixed continuous one-parameter group (T t ) of automorphisms put \(L^{(0)} : = M^1 \left( G \right)\,and\,L^{(m + 1)} : = \{ \mu \in M^1 \left( G \right):\forall t > 0\ \exists\ v(t) \in L^{(m)} :\mu = T_t (\mu )*v(t)\} \,for \,m \ge 0.\)

Under suitable commutativity assumptions it is shown that also for m > 0 there exists a background driving Lévy process with corresponding continuous convolution semigroup (v s)s≥0 determining μ and vice versa. Precisely, μ and v s are related by iterated Lie Trotter formulae.


Convolution Semigroup Multivariate Anal Weak Operator Topology Convolution Structure Logarithmic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker-Kern, P: Stable and semistable hemigroups: domains of attraction and selfdecomposability. J. Theor. Prob. 16, 573–598 (2001)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Becker-Kern, P.: Random integral representation of operator-semi-self-similar processes with independent increments. Stoch. Proc. Appl. 109, 327–344 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bingham, N.H.: Lévy processes and selfdecomposability in finance. Prob. Math. Stat. 26, 367–378 (2006)MATHMathSciNetGoogle Scholar
  4. 4.
    Bunge, J.B.: Nested classes of C-decomposable laws. Ann. Prob. 25, 215–229 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hazod, W., Siebert, E.: Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups. Structural Properties and Limit Theorems. Mathematics and its Applications vol. 531. Kluwer, Dordrecht (2001)Google Scholar
  6. 6.
    Hazod, W.: Probability on matrix-cone hypergroups: Limit theorems and structural properties (2008) (to be published)Google Scholar
  7. 7.
    Hazod, W.: On some convolution semi-and hemigroups appearing as limit distributions of normalized products of group-valued random variables. In: Heyer, H., Marion, J. (eds.) Analysis on Infinite-Dimensional Lie Groups, pp. 104– 121. Marseille (1997), World Scientific, Singapore (1998)Google Scholar
  8. 8.
    Hazod, W.: Stable hemigroups and mixing of generating functionals. J. Math. Sci. 111, 3830–3840 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hazod, W.: On Mehler semigroups, stable hemigroups and selfdecomposability. In: Heyer, H., Hirai, T., Kawazoe, T., Saito, K. (eds.) Infinite Dimensional Harmonic Analysis III. Proceedings 2003, pp. 83–98. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  10. 10.
    Hazod, W., Scheffler, H-P.: Strongly τ-decomposable and selfdecomposable laws on simply connected nilpotent Lie groups. Mh. Math. 128, 269–282 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Heyer, H.: Probability Measures on Locally Compact Groups. Springer, Berlin, Heidelberg, New York (1977)MATHGoogle Scholar
  12. 12.
    Jurek, Z.I., Mason, D.: Operator Limit Distributions in Probability Theory. J. Wiley, New York (1993)MATHGoogle Scholar
  13. 13.
    Jurek, Z.I., Vervaat, W.: An integral representation for self-decomposable Banach space valued random variables. Z. Wahrsch. 62, 247–262 (1983)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jurek, Z.I.: Selfdecomposability: an exception or a rule? Annales Univ. M. Curie-Sklodowska, Lublin. Sectio A, 174–182 (1997)Google Scholar
  15. 15.
    Jurek, Z.I.: An integral representation of operator-selfdecomposable random variables. Bull. Acad. Polon. Sci. 30, 385–393 (1982)MATHMathSciNetGoogle Scholar
  16. 16.
    Jurek, Z.I.: The classes L m(Q) of probability measures on Banach spaces. Bull. Acad. Polon. Sci. 31, 51–62 (1983)MATHMathSciNetGoogle Scholar
  17. 17.
    Kosfeld, K.: Dissertation, Technische Universität Dortmund (forthcoming)Google Scholar
  18. 18.
    Kunita H.: Analyticity and injectivity of convolution semigroups on Lie groups. J. Funct. Anal. 165, 80–100 (1999)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kunita H.: Stochastic processes with independent increments in a Lie group and their self similar properties. In: Stochastic differential and difference equations. Prog. Syst. Control Theor. 23, 183–201 (1997)MathSciNetGoogle Scholar
  20. 20.
    Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  21. 21.
    Sato, K.:Class L of multivariate distributions and its subclasses. J. Multivariate Anal. 10, 207–232 (1980)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sato, K., Yamasato, M.: Operator-selfdecomposable distributions as limit distributions of processes of Ornstein–Uhlenbeck type. Nagoya Math. J. 97, 71–94 (1984)Google Scholar
  23. 23.
    Sato, K., Yamasato, M.: Completely operator-selfdecomposable distributions and operator stable distributions. J. Multivariate Anal. 10, 207–232 (1980)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Shah, R.: Selfdecomposable measures on simply connected nilpotent groups. J. Theoret. Prob. 13, 65–83 (2000)MATHCrossRefGoogle Scholar
  25. 25.
    Urbanik, K.: Lévy's probability measures on Euclidean spaces. Studia Math. 44, 119–148 (1972)MATHMathSciNetGoogle Scholar
  26. 26.
    Urbanik, K.: Limit laws for sequences of normed sums satisfying some stability conditions. J. Multivariate Anal. 3, 225–237 (1973)MathSciNetGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2009

Authors and Affiliations

  1. 1.Fakultät für MathematikTechnische Universität DortmundDortmundGermany

Personalised recommendations