This paper deals with the concept of adaptive tests and with an application to the c-sample location problem. Parametric tests like the ANOVA F-tests are based on the assumption of normality of the data which is often violated in practice. In general, the practising statistician has no clear idea of the underlying distribution of his data. Thus, an adaptive test should be applied which takes into account the given data set. We use the concept of Hogg [21], i.e. to classify, at first, the unknown distribution function with respect to two measures, one for skewness and one for tailweight, and then, at the second stage, to select an appropriate test for that classified type of distribution. It will be shown that under certain conditions such a two-staged adaptive test maintains the level. Meanwhile, there are a lot of proposals for adaptive tests in the literature in various statistical hypotheses settings. It turns out that all these adaptive tests are very efficient over a broad class of distributions, symmetric and asymmetric ones.


Adaptive Scheme Underlying Distribution Adaptive Test Selector Statistic Adaptive Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behnen, K., Neuhaus, G.: Rank tests with estimated scores and their application. Teubner, Stuttgart (1989)MATHGoogle Scholar
  2. 2.
    Beier, F., Büning, H.: An adaptive test against ordered alternatives. Comput. Stat. Data Anal. 25, 441–452 (1997)MATHCrossRefGoogle Scholar
  3. 3.
    Büning, H.: Robuste und adaptive tests. De Gruyter, Berlin (1991)MATHGoogle Scholar
  4. 4.
    Büning, H.: Robust and adaptive tests for the two-sample location problem. OR Spektrum 16, 33–39 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Büning, H.: Adaptive tests for the c-sample location problem — the case of two-sided alternatives. Commun. Stat. Theor. Meth. 25, 1569–1582 (1996)MATHCrossRefGoogle Scholar
  6. 6.
    Büning, H.: Adaptive Jonckheere-type tests for ordered alternatives. J. Appl. Stat. 26, 541–551 (1999)MATHCrossRefGoogle Scholar
  7. 7.
    Büning, H.: An adaptive distribution-free test for the general two-sample problem. Comput. Stat. 17, 297–313 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Büning, H.: An adaptive test for the two-sample scale problem. Diskus-sionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Univer-sität Berlin, Nr. 2003/10 (2003)Google Scholar
  9. 9.
    Büning, H., Kössler, W.: Adaptive tests for umbrella alternatives. Biom. J. 40, 573–587 (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Büning, H., Rietz, M.: Adaptive bootstrap tests and its competitors in the c-sample location problem. J. Stat. Comput. Sim. 73, 361–375 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Büning, H., Thadewald, T.: An adaptive two-sample location-scale test of Lepage-type for symmetric distributions. J. Stat. Comput. Sim. 65, 287–310 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Büning, H., Trenkler, G.: Nichtparametrische statistische Methoden. De Gruyter, Berlin (1994)MATHGoogle Scholar
  13. 13.
    Chatfield, C.: Problem-solving — A statistician's guide. Chapman & Hall, London (1988)Google Scholar
  14. 14.
    Gastwirth, J.L.: Percentile modifications of two-sample rank tests. J. Am. Stat. Assoc. 60, 1127–1140 (1965)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gibbons, J.D., Chakraborti, S.: Nonparametric statistical inference, 3rd ed. Dekker, New York (1992)MATHGoogle Scholar
  16. 16.
    Hájek, J., Sidák, Z.S., Sen, P.K.: Theory of rank tests. Academic, New York (1999)MATHGoogle Scholar
  17. 17.
    Hall, P., Padmanabhan, A.R.: Adaptive inference for the two-sample scale problem. Technometrics 39, 412–422 (1997)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski, E.: A handbook of small data sets. Chapman & Hall, London (1994)Google Scholar
  19. 19.
    Handl, A.: Maßzahlen zur Klassifizierung von Verteilungen bei der Konstruk-tion adaptiver verteilungsfreier Tests im unverbundenen Zweistichproben-Problem. Unpublished Dissertation, Freie Universität Berlin (1986)Google Scholar
  20. 20.
    Hill, N.J., Padmanabham, A.R., Puri, M.L.: Adaptive nonparametric procedures and applications. Appl. Stat. 37, 205–218 (1988)MATHCrossRefGoogle Scholar
  21. 21.
    Hogg, R.V.: Adaptive robust procedures. A partial review and some suggestions for future applications and theory. J. Am. Stat. Assoc. 69, 909–927 (1974)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hogg, R.V.: A new dimension to nonparametric tests. Commun. Stat. Theor. Meth. 5, 1313–1325 (1976)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Hogg, R.V., Fisher, D.M., Randles, R.H.: A two-sample adaptive distribution-free test. J. Am. Stat. Assoc. 70, 656–661 (1975)CrossRefGoogle Scholar
  24. 24.
    Hothorn, L., Liese, F.: Adaptive Umbrellatests — Simulationsuntersuchungen. Rostocker Mathematisches Kolloquium 45, 57–74 (1991)MATHGoogle Scholar
  25. 25.
    Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Husková, M.: Partial review of adaptive procedures. In: Sequential Methods in Statistics 16, Banach Center Publications, Warschau (1985)Google Scholar
  27. 27.
    Jonckheere, A.R.: A distribution-free k-sample test against ordered alternatives. Biometrika 41, 133–145 (1954)MATHMathSciNetGoogle Scholar
  28. 28.
    Mack, G.A., Wolfe, D.A.: K-sample rank tests for umbrella alternatives. J. Am. Stat. Assoc. 76, 175–181 (1981)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Neuhäuser, M., Büning, H., Hothorn, L.: Maximum test versus adaptive tests for the two-sample location problem. J. Appl. Stat. 31, 215–227 (2004)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    O'Gorman, T.W.: A comparison of an adaptive two-sample test to the t-test, rank-sum, and log-rank tests. Commun. Stat. Simul. Comp. 26, 1393–1411 (1997)MATHCrossRefGoogle Scholar
  31. 31.
    O'Gorman, T.W.: Applied adaptive statistical methods — tests of significance and confidence intervals. ASA-SIAM Ser. Stat. Appl. Prob., Philadelphia (2004)Google Scholar
  32. 32.
    Randles, R.H., Wolfe, D.A.: Introduction to the theory of nonparametric statistics. Wiley, New York (1979)MATHGoogle Scholar
  33. 33.
    Roussas, G.G.: A first course in mathematical statistics. Addison-Wesley, Reading, MA (1973)MATHGoogle Scholar
  34. 34.
    Ruberg, S.J.: A continuously adaptive nonparametric two-sample test. Com-mun. Stat. Theor. Meth. 15, 2899–2920 (1986)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Simpson, D.G., Margolin, B.H.: Recursive nonparametric testing for dose-response relationships subject to downturns at high doses. Biometrika 73, 589–596 (1986)MATHMathSciNetGoogle Scholar
  36. 36.
    Sun, S.: A class of adaptive distribution-free procedures. J. Stat. Plan. Infer. 59, 191–211 (1997)MATHCrossRefGoogle Scholar
  37. 37.
    Tiku, M.L., Tan, W.Y., Balakrishnan, N.: Robust inference. Dekker, New York (1986)MATHGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2009

Authors and Affiliations

  1. 1.Freie Universität BerlinBerlinGermany

Personalised recommendations