Advertisement

Carbon Capture and Storage

Part of the Sustainability and Innovation book series (SUSTAINABILITY)

Coal is a major pillar of electricity generation worldwide, providing around 40% of total electricity generation (IEA 2006b). Emerging countries like China or India are continuously commissioning new large coal plants in order to meet their massive increases in electricity demand. In Germany, coal and lignite are major domestic energy resources and also dominating inputs to electricity generation. Prospects for escaping this “carbon lock-in” and the related environmental and climate impacts are unfavorable at present (Unruh 2000; 2002; Perkins 2003; Unruh and Carrillo-Hermosilla 2006).

This chapter sets out to explore these issues in more detail. We ask whether CCS could contribute to a sustainable future electricity system, and whether it is likely to be available in terms of time, costs, and regulatory and institutional framework so that the challenges of climate change mitigation currently under discussion can be met. We start with an overview of the current state of CCS technology, its economics and environmental performance, and discuss the challenges facing the technology and its deployment. From this, we portray the process of innovation in Germany and the factors influencing it. As CCS is at an early stage of development, and as its diffusion dynamics are strongly dependent on the engagement of actors, specific attention is given to the setting of the actors and actor constellations in Germany. We then discuss the possibilities and needs for shaping the framework conditions for innovation in such a way that CCS may contribute to a sustainable electricity system to a suitable extent. We conclude with an overview of our findings.

Keywords

Climate Policy Climate Protection Integrate Gasification Combine Cycle Carbon Dioxide Capture Pulverize Coal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BMWA (2003) COORETEC. CO2-Reduktions-Technologien. Forschungs- und Entwicklungskonzept für emissionsarme fossil befeuerte Kraftwerke. Bundesministerium für Wirtschaft und Arbeit (BMWA), BerlinGoogle Scholar
  2. Bundesregierung (2007) Eckpunkte für ein integriertes Energie- und Klimaprogramm, BerlinGoogle Scholar
  3. Chalaturnyk R, Gunter W (2004) Geological storage of CO2: time frames, monitoring and verification. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. Vol 1: Peer-Reviewed Papers and Plenary Presentations, VancouverGoogle Scholar
  4. Clarke D, Debeljak B, de Janeiro V, Göttlicher G, Graham D, Kirkegaard N, Madsen M, Pasini S, Stortelder B, Strömberg L, vom Berg W, Hamacher V (2004) CO2 Capture and Storage. VGB Report on the State of the Art. VGB PowerTech, EssenGoogle Scholar
  5. COORETEC (2003) Forschungs- und Entwicklungskonzept für emissionsarme fossil befeuerte Kraftwerke. BMWA (Bundesministerium für Wirtschaft und Arbeit), BerlinGoogle Scholar
  6. Curry TE (2004) Public Awareness of Carbon Capture and Storage: A Survey of Attitudes toward Climate Change Mitigation. PhD Thesis, Massachusetts Insitute of Technology, CambridgeGoogle Scholar
  7. Dadhich P, Dooley J, Fujii Y, Hohmeyer O, Riahi K (2005) Cost and Economic Potential. In: IPCC (ed) Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge, UKGoogle Scholar
  8. Damen K (2007) Reforming Fossil Fuel Use. PhD Thesis. Utrecht University, Utrecht, NetherlandsGoogle Scholar
  9. Daniels A, Heiskanen E (2006) Schwarze Pumpe CO2 capture and storage project. Work Package 2 — Historical and recent attitude of shareholders. Create AcceptanceGoogle Scholar
  10. de Coninck H, Curnow JAP, Todd Flach OAF, Groenenberg H, Norton C, Reiner D, Shackley S, Sigurthorsson G (2007) Is CO2 capture and storage ready to roll? Journal for European Environmental & Planning Law 5: 402–414Google Scholar
  11. de Coninck H, Groenenberg H (2007) Incentivising CCS in the EU. Presentation, Stakeholder meeting DG ENV, 8 May 2007. Retrieved 10 June 2008, from http://www.ecn.nl/fileadmin/ecn/units/bs/Transitietechnologieen/Incentivising_CCS_in_the_EU.pdf
  12. Dimas S (2006a) Answer of Commissioner Dimas on behalf of the European Commission to Question No. E-0075/06 by Member of European Parliament Daniel Caspary, 10.06.2006, Document of the European Parliament, P6_RE(2006)0075Google Scholar
  13. Dimas S (2006b) Speech at the General Assembly of the Technology Platform on Zero Emission Fossil Fuel Power Plants, 12 September 2006. Speech/06/492, BrusselsGoogle Scholar
  14. Dornner S, Lübbert D (2006) Kohlendioxid-arme Kraftwerke. CO2-Sequestrierung — Stand der Technik, ökonomische und ökologische Diskussion. Berlin: Deutscher Bundestag — Wissenschaftliche Dienste, BerlinGoogle Scholar
  15. Ecofys (2004) Global carbon dioxide storage potential and costs. Ecofys, by order of the Rijksinsituut voor Volksgezondheit end Milieu, EEP-02001, Utrecht. Retrieved 10 June 2008, from http://www.ecofys.com/com/publications/documents/globalcarbondioxidestorage.pdf
  16. Edenhofer DO, Held H, Bauer N (2004) A Regulatory Framework for Carbon Capturing and Sequestration within the Post-Kyoto Process. In: Rubin ES, Keith DW, Gilboy CF (eds) Proceedings of 7th International Conference on Greenhouse Gas Control Technologies, Volume 1: Peer-reviewed Papers and Plenary Presentations. IEA Greenhouse Gas Programme, Cheltenham, UKGoogle Scholar
  17. Eggleston S (2006) Estimation of Emissions from CO2 Capture and Storage: the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Presentation at the UNFCCC workshop on carbon dioxide capture and storage, 20 May 2006, BonnGoogle Scholar
  18. EnBW (2006) Geschäftsbericht 2006. Mit Energie Werte schaffen. Unternehmensbericht, KarlsruheGoogle Scholar
  19. E.on (2007) Strategy and Key Figures 2007 — Update, DüsseldorfGoogle Scholar
  20. European Commission (2004) European CO2 Capture and Storage Projects. Directorate-General for Research, Directorate J — Energy, Unit J2 — Energy production and distribution systems, BrusselsGoogle Scholar
  21. European Commission (2007a) Communciation from the Commission to the Council and the European Parliament. Sustainable power generation from fossil fuels: aiming for near-zero emissions from coal after 2020. Commission of the European Communities, Brussels, 10 Jan 2007, COM(2006) 843 finalGoogle Scholar
  22. European Commission (2007b) Limiting Global Climate Change to 2 degrees Celsius. The way ahead for 2020 and beyond. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions, Brussels, 10 Jan 2007, COM(2007) 2 finalGoogle Scholar
  23. European Commission (2008a) Accompanying document to the Proposal for a Directive of the European Parliament and the Council on the geological storage of carbon dioxide Impact Assessment. Commission Staff Working Document, Brussels, 23 Jan 2008Google Scholar
  24. European Commission (2008b) Proposal for a Directive of the European Parliament and of the Council on the geological storage of carbon dioxide and amending Council Directives 85/337/EEC, 96/6I/EC, Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC and Regulation (EC) No 1013/2006, Brussels, 23 Jan 2008Google Scholar
  25. European Commission (2008c) Questions and Answers on the proposal for a directive on the geological storage of carbon dioxide, Brussels, 23 Jan 2008, MEMO/08/36Google Scholar
  26. Fischer C, Pehnt M, Praetorius B, Schumacher K (2006) Carbon Capture and Storage: Settling the German Coal vs. Climate Change Dispute? Discussion Paper 7, Berlin/HeidelbergGoogle Scholar
  27. Fischer C, Praetorius B (2008) Carbon Capture and Storage: Settling the German Coal vs. Climate Change Dispute? International Journal of Environmental Technology and Management 9 (2/3)Google Scholar
  28. GESTCO (2004) Geological Storage of CO2 from Combustion of Fossil Fuel. Summary Report. GESTCOGoogle Scholar
  29. Gibbins J, Chalmers H (2008) Preparing for global rollout: A ‘developed country first’ demonstration programme for rapid CCS deployment. Energy Policy 36 (2): 501-507CrossRefGoogle Scholar
  30. Gielen D, Podkanski J (2004) The Future Role of CO2 Capture in the Electricity Sector. 7th Conference of Greenhouse Gas Control Technologies 2004, VancouverGoogle Scholar
  31. Göttlicher G (1999) Energetik der Kohlendioxidrückhaltung in Kraftwerken. VDI-Verlag, DüsseldorfGoogle Scholar
  32. Henkel J (2006) Life Cycle Assessment of Carbon Dioxide Capture and Storage. PhD Thesis, Institute for Energy and Environmental Research, University of Heidelberg, and Institute for Energy Systems Research, TU Berlin, Heidelberg, BerlinGoogle Scholar
  33. Hepple R, Benson S (2003) Implications of surface seepage on the effectiveness of geological storage of CO2 as a climate change mitigation strategy. Proceeding of the 6th International Conference on Greenhouse Gas Control Technologies, 1–4 October 2002, Kyoto, Japan, PergamonGoogle Scholar
  34. Idrissova F (2004) Life Cycle Assessment of Selected Carbon Dioxide Capture, Transportation and Storage Options from Coal-fired Power Plants. PhD Thesis, Ruprecht-Karls-Universität, HeidelbergGoogle Scholar
  35. IEA (2003) World energy investment outlook. International Energy Agency, ParisGoogle Scholar
  36. IEA (2005) Legal aspects of storing CO2. International Energy Agency, ParisGoogle Scholar
  37. IEA (2006a) 2nd IEA Workshop on Legal Aspects of Storing CO2. International Energy Agency, ParisGoogle Scholar
  38. IEA (2006b) Energy technology perspectives. OECD/IEA (International Energy Agency), ParisGoogle Scholar
  39. IEA (2006c) Good News for CO2 Storage under the Seabed. IEA Greenhouse Issues, December 2006. International Energy Agency, ParisGoogle Scholar
  40. IEA (2007) CO2 Capture and Storage — Database of Research and Demonstration projects. Retrieved 5 June 2008, from http://co2captureandstorage.info/
  41. IPCC (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge, UKGoogle Scholar
  42. IPCC (2006) IPCC Guidelines on National Greenhouse Gas Emission Inventories. Retrieved 10 June 2008, from http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
  43. Kharaka Y, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology 34: 577–580CrossRefGoogle Scholar
  44. Levefre J (2006) Towards an EU Policy Framework for CCS. UNFCCC workshop on carbon dioxide capture and storage, BonnGoogle Scholar
  45. Linßen J, Markewitz P, Martinsen D, Walbeck M (2006) Zukünftige Energieversorgung unter den Randbedingungen einer großtechnischen CO2-Abscheidung und Speicherung. BMWI (Bundesministerium für Wirtschaft und Technologie), BerlinGoogle Scholar
  46. Martinsen D, Linssen J, Markewitz P, Vögele S (2007) CCS: A future CO2 mitigation option for Germany? A bottom-up approach. Energy Policy 35: 2110–2120CrossRefGoogle Scholar
  47. Öko-Institut (2007) CO2-Abscheidung und -Lagerung bei Kraftwerken, Modul 3: Rechtliche Bewertung, Regulierung, Akzeptanz, BerlinGoogle Scholar
  48. Pehnt M, Henkel J (submitted) Life Cycle Assessment of Carbon Dioxide Capture and Storage from Lignite Power Plants. International Journal of Greenhouse Gas ControlGoogle Scholar
  49. Perkins R (2003) Technological “Lock-in”. Internet Encyclopaedia of Ecological Economics. Economics ISfE, Economics IEoE. International Society for Ecological EconomicsGoogle Scholar
  50. Peteves SD, Tzimas E, Starr F, Soria A (2005) Hydrogen Pre-Feasibility Study. National Agency for New Technologies, Energy and the Environment (ENEA), Italy; Fraunhofer Institut für Systemtechnik und Innovationsforschung (ISI), Germany; Riso National Laboratory, Denmark.Google Scholar
  51. Point Carbon (2006) UK treasurer dashes CCS hopes in green budget. Press release, 6 Dec 2006Google Scholar
  52. Radgen P, Cremer C, Warkentin S, Gerling P, May F, Knopf S (2006) Verfahren zur CO2-Abscheidung und -Deponierung. Fraunhofer Institut für Systemtechnik und Innovationsforschung (ISI) and Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), DessauGoogle Scholar
  53. Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy (35)Google Scholar
  54. RWE (2006) Leuchtturmprojekt der RWE-Klimastrategie: Das CO2-freie Kraftwerk. Retrieved 10 June 2008, from http://www.rwe.com/app/Pressecenter/ Download. aspx?pmid=4001045&datei=2
  55. RWE (2007) Facts & Figures 2007 (Updated May 2007), EssenGoogle Scholar
  56. Schumacher K, Sands RD (2006) Innovative energy technologies and climate policy in Germany. Energy Policy 34 (18): 3929–3941CrossRefGoogle Scholar
  57. Stern N (2006) Stern Review on the Economics of Climate Change, Cambridge, UKGoogle Scholar
  58. UBA (2006) Technische Abscheidung und Speicherung von CO2 — nur eine Übergangslösung. Positionspapier des Umweltbundesamtes zu möglichen Auswirkungen, Potenzialen und Anforderungen. Umweltbundesamt, Dessau, Climate Change Nr. 04/2006Google Scholar
  59. Unruh GC (2000) Understanding carbon lock-in. Energy Policy 28 (12): 817–830CrossRefGoogle Scholar
  60. Unruh GC (2002) Escaping carbon lock-in. Energy Policy, 30 (4): 317–325CrossRefGoogle Scholar
  61. Unruh GC, Carrillo-Hermosilla J (2006) Globalizing carbon lock-in. Energy Policy 34(10): 1185–1197CrossRefGoogle Scholar
  62. Vattenfall (2007) Daten & Fakten 2006. Vattenfall Europe Mining & Generation, CottbusGoogle Scholar
  63. Viebahn P, Nitsch J, Fischedick M, Esken A, Schüwer D, Supersberger N, Zuberbühler U, Edenhofer O (2007) Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. International Journal of Greenhouse Gas Control (1): 121–133Google Scholar
  64. WBGU (2003) World in Transition: Towards Sustainable Energy Systems. German Advisory Council on Global Change. Earthscan, LondonGoogle Scholar
  65. WI (2006) Socio-Economic Research on the Acceptance of Carbon Capture and Storage (CCS) at International and National Levels. Project flyer. Wuppertal Institute for Climate Energy and EnvironmentGoogle Scholar
  66. WI, DLR, ZSW, PIK (2007) Strukturell-ökonomisch-ökologischer Vergleich regenerativer Energietechnologien mit Carbon Capture and Storage. WI (Wuppertal Institut für Klima, Umwelt, Energie); DLR (Deutsches Zentrum für Luft- und Raumfahrt); ZSW (Zentrum für Sonnenenergie- und Wasserstoff-Forschung); PIK (Potsdam Institut für Klimafolgenforschung), Wuppertal, Stuttgart, PotsdamGoogle Scholar
  67. WI, FZJ, BSR, ISI (2008) Sozioökonomische Begleitforschung zur gesellschaftlichen Akzeptanz con Carbon Capture and Storage (CCS) auf nationaler und internationaler Ebene. WI (Wuppertal Institut für Klima, Umwelt, Energie), FZJ (Forschungszentrum Jülich), BSR Sustainability GmbH, ISI (Fraunhofer Institut System- und Innovationsforschung), Wuppertal, 22 Feb 2008Google Scholar
  68. Working Group on CCS (2006) Report of Working Group 3: Carbon Capture and Geological Storage (CCS). The Second European Climate Change Programme. Final ReportGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2009

Personalised recommendations