Advertisement

Micro Cogeneration

Part of the Sustainability and Innovation book series (SUSTAINABILITY)

Micro combined heat and power (micro cogeneration) is the simultaneous generation of heat (or cold) and power on the level of individual buildings, based on small energy conversion units (below 15 kWel) which are usually fuelled by natural gas or heating oil. The heat is used for space and water heating inside the building, whilst electricity is used within the building or fed into the public electricity grid (Fig. 4.1). With the help of modern communication technologies, micro cogeneration could also be controlled centrally and integrated into an ensemble of other generation or load management technologies, forming a so called “virtual power plant”.

This chapter looks at the dynamics of micro cogeneration diffusion, with a particular focus on the German market. We explore structural and functional elements of the related innovation system and analyze the functions and factors that promote or prevent the emergence of such an innovative technology within the existing German energy system. Micro cogeneration was chosen as the subject of the case study because it offers a rewarding opportunity for studying the conditions facing innovations in potentially unfavorable regime contexts (Pehnt et al. 2006; Praetorius et al. 2008).

Keywords

Fuel Cell District Heating Wood Pellet Cogeneration Plant Cogeneration System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergek A, Hekkert M, Jacobsson S (2006) Functions in innovation systems: a framework for analysing energy system dynamics. Workshop on innovation in energy systems: learning from economic, institutional and management approaches, OxfordGoogle Scholar
  2. Brown JE, Hendry CN, Harborne P (2007) An emerging market in fuel cells? Residential combined heat and power in four countries. Energy Policy 35 (4): 2173–2186CrossRefGoogle Scholar
  3. Cames M, Schumacher K, Voß J-P, Grashof K (2006) Institutional framework and innovation policy for micro cogeneration in Germany. In: Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) Micro cogeneration. towards decentralized energy systems. Springer, Berlin, Heidelberg, pp 171–196Google Scholar
  4. Delta (2007) The closure of microgen — a body-blow for micro-CHP? Research Brief, Delta Energy & Environment ConsultantsGoogle Scholar
  5. ELEP (2005) Interconnection of decentralised electricity generation: a review of standards, technical requirements and procedures in the EU-15. Deliverable 1.1 and 1.2, European Local Electricity Production (ELEP) project, BrusselsGoogle Scholar
  6. ELEP (2007) Newsletter 4, European Local Electricity Production (ELEP), Brussels, MarchGoogle Scholar
  7. Fischer C (2006) From consumers to operators: the role of micro cogeneration. In: Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) Micro cogeneration. Towards decentralized energy systems. Springer, Berlin, Heidelberg, pp 117–144Google Scholar
  8. Jacobsson S, Lauber V (2006) The politics and policy of energy system transformation — explaining the German diffusion of renewable energy technology. Energy Policy 34 (3): 256–276CrossRefGoogle Scholar
  9. Jenkins N, Allan R, Crossley P, Kirschen D, Strbac G (2000) Embedded Generation. Institution of Engineering and Technology, LondonGoogle Scholar
  10. Krewitt W, Pehnt M, Fischedick M, Temming H (eds) (2004) Brennstoffzellen in der Kraft-Wärme-Kopplung — Ökobilanzen, Szenarien, Marktpotenziale, Erich Schmidt Verlag, BerlinGoogle Scholar
  11. Meixner H (2006) Rahmenbedingungen für Eigenerzeugung und für Energieliefer-Contracting mit Klein-KWK im Mietwohnungsbereich. In: Pöschk J (ed) Energieeffizienz in Gebäuden — Jahrbuch 2006. VME Verlag und Medienservice Energie, Berlin, pp 167–173Google Scholar
  12. Osenga M (2005) Micro cogen for homes: Honda, climate energy system under development for home heat and power; 15,000 in Japan. Diesel Progress, North American Edition, NovemberGoogle Scholar
  13. Pehnt M (2002) Energierevolution Brennstoffzelle? Perpektiven, Fakten, Anwendungen. Wiley VCH, WeinheimGoogle Scholar
  14. Pehnt M (2006) Micro cogeneration technology. In: Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) Micro cogeneration. Towards decentralized energy systems. Springer, Berlin, Heidelberg, pp 1–18Google Scholar
  15. Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) (2006) Micro cogeneration. Towards decentralized energy systems, Springer, Berlin, HeidelbergGoogle Scholar
  16. Pehnt M, Fischer C (2006) Environmental impacts of micro cogeneration. In: Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) Micro cogeneration. Towards decentralized energy systems. Springer, Berlin, Heidelberg, pp 87–116Google Scholar
  17. Pehnt M, Schneider L (2006) The future heating market and the potential for micro cogeneration. In: Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) Micro cogeneration. Towards decentralized energy systems. Springer, Berlin, Heidelberg, pp 48–65Google Scholar
  18. Praetorius B, Sauter R, Watson J (2008) On the dynamics of microgeneration diffusion in the UK and Germany. In: Foxon T, Köhler J, Oughton C (eds) Innovation for a low carbon economy: economic, institutional and management approaches. Edward Elgar, Cheltenham, UK, pp 142–174Google Scholar
  19. Sauter R, Watson J, James P, Myers L, Bahaj B (2006) Economic Analysis of Microgeneration Deployment Models, Working Paper Series 2006/1Google Scholar
  20. Schneider L (2006) Economics of micro cogeneration. In: Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) Micro cogeneration. Towards decentralized energy systems. Springer, Berlin, Heidelberg, pp 67–86Google Scholar
  21. Schneider L, Pehnt M (2006) Embedding micro cogeneration in the energy-supply system. In: Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) Micro cogeneration. Towards decentralized energy systems. Springer, Berlin, Heidelberg, pp 197–218Google Scholar
  22. Voß J-P, Fischer C (2006) Dynamics of socio-technical change: micro cogeneration in energy system transformation scenarios. In: Pehnt M, Cames M, Fischer C, Praetorius B, Schneider L, Schumacher K, Voß J-P (eds) Micro cogeneration. Towards decentralized energy systems. Springer, Berlin, Heidelberg, pp 19–47Google Scholar
  23. Whisper Tech (2004) Whisper Tech signs $300 million agreement. Whisper Tech Media ReleaseGoogle Scholar
  24. Ziesing H-J, Matthes FC, Horn M, Harthan R (2006) Ermittlung der Potenziale für die Anwendung der Kraft-Wärme-Kopplung und der erzielbaren Minderung der CO2-Emissionen einschließlich Bewertung der Kosten (Verstärkte Nutzung der Kraft-Wärme-Kopplung). Öko-Institut und DIW Berlin. Forschungsvorhaben Nr. 202 41 182 des Umweltbundesamtes, BerlinGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2009

Personalised recommendations