Towards a Systemic Understanding of Innovation

Part of the Sustainability and Innovation book series (SUSTAINABILITY)

So far we have discussed selected aspects of the electricity system and its transition over time. We surveyed the evolution of the technological, institutional and structural components of today’s electricity system in Germany, and assessed indicators for the diffusion and success of innovation as well as for its path dependency. All of these aspects are a necessary background for our research. However, both statistics and standardized indicators miss explanatory power with regard to the dynamics of innovation. While they are an important ingredient in capturing the innovation history and technological developments, they fail to capture the coevolutionary dynamics within the process of innovation and the interactive relation between the different elements of the electricity system in the innovation process, and they fail to indicate possible drivers and driven, and barriers to innovation in the electricity system. As we are interested in identifying options and the need for shaping the innovation and transformation path towards a sustainable future electricity system, we need a more complex conception of innovation and a more systemic understanding of the processes involved.

For this purpose, we first clarify the concept of innovation used in this book, and also the definition of sustainability as applied in analyzing the innovation cases. We then discuss suggestions for systemic perspectives on innovation dynamics with regard to their usefulness for the purpose of the innovation cases analyzed in this book. From this basis we derive the research design applied to the innovation case studies in this book.


Innovation Process Electricity System National Innovation System Innovation Dynamic Transformation Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergek A, Hekkert M, Jacobsson S (2008) Functions in innovation systems:a framework for analysing energy system dynamics and identifying goals for system-building activities by entrepreneurs and policy makers. In: Foxon T, Köhler J, Oughton C (eds) Innovation for a low carbon economy: economic, institutional and management approaches. Edward Elgar, Cheltenham, UK, pp 79–111Google Scholar
  2. Bossel H (1999) Indicators for sustainable development: theory, method, applications. A report of the Balaton group. International Institute for Sustainable Development, Winnipeg, CanadaGoogle Scholar
  3. Brandl V, Jörissen J, Kopfmüller J, Paetau M (2001) Das integrative Konzept: Mindestbedingungen nachhaltiger Entwicklung. In: Grunwald A, Coenen R, Nitsch J, Sydow A, Wiedemann P (eds) Wege zur Diagnose und Therapie von Nachhaltigkeitsdefiziten. edition sigma Berlin, Global zukunftsfähige Entwicklung — Perspektiven für Deutschland, Vol. 2, pp 79–102Google Scholar
  4. Carlsson B, Stankiewicz R (1991) On the nature, function and composition of technological systems. Journal of Evolutionary Economics 1 (2): 93–118CrossRefGoogle Scholar
  5. Dosi G (1982) Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change. Research Policy 11: 147–162CrossRefGoogle Scholar
  6. Edquist C (1997) Systems of Innovation: Technologies, Institutions and Organizations. Pinter, LondonGoogle Scholar
  7. Elzen B, Geels F, Green K (eds) (2004) System innovation and the transition to sustainability: theory, evidence and policy, Edward Elgar, Cheltenham, UKGoogle Scholar
  8. Enquête (2002) Nachhaltige Energieversorgung unter den Bedingungen der Globalisierung und der Liberalisierung. Abschlussbericht. Enquete Kommission “Nachhaltige Energieversorgung” des Deutschen Bundestages, BerlinGoogle Scholar
  9. Freeman C (1987) Technology Policy and Economic Performance: Lessons from Japan. Pinter, LondonGoogle Scholar
  10. Freeman C (1991) Networks of innovators: a synthesis of research issues. Research Policy 20 (5): 499–514CrossRefGoogle Scholar
  11. Geels FW (2002) Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research Policy 31 (8/9): 1257–1274CrossRefGoogle Scholar
  12. Geels FW (2004) Understanding system innovations: a critical literature review and a conceptual synthesis. In: Elzen B, Geels FW, Green K (eds) System innovation and the transition to sustainability. Theory, evidence and policy. Edward Elgar, Cheltenham, UK, pp 19–47Google Scholar
  13. Geels FW (2005) Technological transitions and system innovations: a co-evolutionary and socio-technical analysis. Edward Elgar, Cheltenham, UKGoogle Scholar
  14. Geels FW (2006) Report of KSI-workshop ‘Understanding processes in sustainable innovation journeys’ (2–3 October), UtrechtGoogle Scholar
  15. Grunwald A (2007) Governance for sustainable development: coping with ambivalence, uncertainty and distributed power. Journal of Environmental Policy and Planning 9 (3/4): 245–262Google Scholar
  16. Hekkert MP, Negro S, Suurs R, Kuhlmann S, Smits R (2007) Functions of innovation systems: a new approach for analysing technological change. Technological Forecasting and Social Change 74 (4): 413–432CrossRefGoogle Scholar
  17. Hughes TP (1983) Networks of Power: Electrification in Western Society 1880–1930. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  18. Hughes TP (1987) The evolution of large technological systems. In: Bijker WE, Hughes TP, Pinch T (eds) The social construction of technological systems. The MIT Press, Cambridge, MA, pp 51–82Google Scholar
  19. Jacobsson S, Bergek A (2004) Transforming the energy sector: the evolution of technological systems in renewable energy technology. Industrial and Corporate Change 13 (5): 815–849CrossRefGoogle Scholar
  20. Jacobsson S, Lauber V (2006) The politics and policy of energy system transformation — explaining the German diffusion of renewable energy technology. Energy Policy 34 (3): 256–276CrossRefGoogle Scholar
  21. Kemp R (1994) Technology and the transition to environmental sustainability. The problem of technological regime shifts. Futures 26: 1023–1046CrossRefGoogle Scholar
  22. Lundvall B-Å (1985) Product innovation and user-producer interaction. Aalborg University Press, AalborgGoogle Scholar
  23. Mahapatra K, Gustavsson L, Madlener R (2007) Bioenergy innovations: the case of wood pellet systems in Sweden. Technology Analysis and Strategic Management 19 (1): 99–125CrossRefGoogle Scholar
  24. Mayntz R, Hughes TP (1988) The development of large technical systems. Campus, Frankfurt/New YorkGoogle Scholar
  25. Minsch J, T. Schulz, et al. (2000) Teilprojekt Volkswirtschaftslehre: Ökologische Wirtschaftspolitik zwischen Selbstorganisation und Fremdsteuerung — “Erfindungen” gegen die umweltpolitische Blockade. Institut für Wirtschaft und Ökologie (IWÖ), University St. GallenGoogle Scholar
  26. Nelson R (ed) (1993) National Innovation Systems — A Comparative Analysis, Oxford University Press, New York, OxfordGoogle Scholar
  27. Nelson R, Winter S (1982) An evolutionary theory of economic change. Belknap Press of Harvard University Press, Cambridge Massachusetts and London (HD)Google Scholar
  28. Nitsch J, Nast M, Pehnt M, Trieb F, Rösch C, Kopfmüller J (2001) Global zukunftsfähige Entwicklung — Perspektiven für Deutschland (HGF-Projekt). DLR-Institut für Technische Thermodynamik; FZ Karslruhe, Institut für Technikfolgenabschätzung und Systemanalyse, Stuttgart, KarlsruheGoogle Scholar
  29. OECD (1997) National innovation systems. OECD, ParisGoogle Scholar
  30. OECD (2001) Innovative networks. Co-operation in national innovation systems. OECD, ParisGoogle Scholar
  31. Raven R (2007) Niche accumulation and hybridisation strategies in transition processes towards a sustainable energy system: an assessment of differences and pitfalls. Energy Policy 35 (4): 2390–2400CrossRefGoogle Scholar
  32. Rip A, Kemp R (1998) Technological change. In: Rayner S, Malone EL (eds) Human choice and climate change. Battelle Press, Columbus, Ohio, 2, pp 327–399Google Scholar
  33. Simon HA (1957) Models of man. Social and rational. John Wiley & Sons, New YorkGoogle Scholar
  34. TIPS (2003) Innovation — An integrated concept for the study of transformation in electricity systems. TIPS Discussion Paper 3, BerlinGoogle Scholar
  35. Walker G, Shove E (2007) Ambivalence, sustainability and the governance of sociotechnical transitions. Journal of Environmental Policy and Planning 9 (3/4): 213–225Google Scholar
  36. Williamson OE (1985) The economic institutions of capitalism. The Free Press, New YorkGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2009

Personalised recommendations