Estimation of Functional Regression Models for Functional Responses by Wavelet Approximation

  • Ana Aguilera
  • Francisco Ocaña
  • Mariano Valderrama
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

A linear regression model to estimate a sample of response curves (realizations of a functional response) from a sample of predictor curves (functional predictor) is considered. Difierent procedures for estimating the parameter function of the model based on wavelets expansions and functional principal component decomposition of both the predictor and response curves are proposed. Wavelets coeficients will be estimated from discrete observations of sample curves at irregularly spaced time points that could be difierent among sample individuals.


Functional Response Discrete Wavelet Transform Multivariate Linear Regression Model Functional Data Analysis Orthonormal Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aguilera, A.M., Ocaña, F.A. and Valderrama, M.J.: Forecasting with unequally spaced data by a functional principal component approach. Test. 8 (1), 233-254 (1999).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Antoniadis, A. and Sapatinas, T.: Wavelet methods for continuous-time predic-tion using Hilbert-valued autoregressive processes. Journal of Multivariate Analysis. 87 (1), 133-158 (2003).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Cardot, H., Ferraty, F. and Sarda, P.: Functional linear model. Statistics and Prob-ability Letters. 45, 11-22 (1999).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Chiou, J-M., Müller, H-G. and Wang, J-L.: Functional response model. Statistica Sinica. 14, 659-677 (2004).Google Scholar
  5. [5]
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Communica-tions on Pure and Applied Mathematics. 41, 909-996 (1988).MATHCrossRefMathSciNetGoogle Scholar
  6. [8]
    Ferraty, F. and View, P.: Nonparametric functional data analysis. Theory and prac-tice. Springer-Verlag: New York (2006).Google Scholar
  7. [7]
    Mallat, S.: A wavelet tour of signal processing. Academic Press: San Diego (1998).MATHGoogle Scholar
  8. [8]
    Ocaña, F.A., Aguilera, A.M. and Escabias, M.: Computational considerations in functional principal component analysis. Computational Statistics. 22, 449-466 (2007).CrossRefMathSciNetGoogle Scholar
  9. [13]
    Ramsay, J. O. and Silverman, B. W.: Functional Data Analysis. Second edition, Springer-Verlag: New York (2005).Google Scholar
  10. [10]
    Yao, F., Muller, H-G. and Wang, J-L.: Functional linear regression analysis for lon-gitudinal data. The Annals of Statistics. 33 (6), 2873-2903 (2005).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2008

Authors and Affiliations

  • Ana Aguilera
    • 1
  • Francisco Ocaña
    • 1
  • Mariano Valderrama
    • 1
  1. 1.Department of StatisticsO.R. University of GranadaSpain

Personalised recommendations