Advertisement

Point-wise Kriging for Spatial Prediction of Functional Data

  • Pedro Delicado
  • Ramón Giraldo
  • Jorge Mateu
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

We propose a methodology to carry out spatial prediction when measured data are curves. Our approach is based on both the kriging predictor and the functional linear point-wise model theory. The spatial prediction of an unobserved curve is obtained as a linear combination of observed functions. We employ a solution based on basis function to estimate the functional parameters. A real data set is used to illustrate the proposals.

Keywords

Functional Parameter Ordinary Kriging Spatial Prediction Functional Data Analysis Functional Principal Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cardot, H., Ferraty, F. and Sarda, P.: Functional linear model. Statistics and Prob-ability Letters. 45, 11-22 (1999).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Ferraty, F. and Vieu, P.: Curves discrimination. A non parametric functional approaches. Computational Statistics & Data Analysis. 44, 161-173 (2003).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Ferraty, F. and Vieu, P.: Non parametric functional data analysis. Theory and practice. New York, Springer. (2006).Google Scholar
  4. [4]
    Myers, D.: Matrix formulation of cokriging. Mathematical Geology. 14(3), 249-257 (1982).CrossRefMathSciNetGoogle Scholar
  5. [5]
    Ramsay, J. and Silverman, B.: Functional Data Analysis, second edition. New York, Springer. (2005).Google Scholar
  6. [6]
    ilverman, B.: Incorporating parametric e ects into functional principal components. Journal Royal Statistical Society, Series B. 57, 673-689 (1995).Google Scholar
  7. [6]
    Ver Hoef, J. and Cressie, N.: Multivariable spatial prediction. Mathematical Geology. 25(2),219-240 (1993).MATHCrossRefMathSciNetGoogle Scholar
  8. [7]
    Wackernagel, H.: Multivariable geostatistics. An introduction with applications. Berlin, Springer-Verlag. (1995).Google Scholar

Copyright information

© Physica-Verlag Heidelberg 2008

Authors and Affiliations

  • Pedro Delicado
    • 1
  • Ramón Giraldo
    • 2
  • Jorge Mateu
    • 3
  1. 1.Universitat Politècnica de CatalunyaSpain
  2. 2.Departamento de EstadísticaUniversidad Nacional de ColombiaColombia
  3. 3.Departamento de MatemáticasUniversitat Jaume ISpain

Personalised recommendations