Solving Multicollinearity in Functional Multinomial Logit Models for Nominal and Ordinal Responses

  • Ana Aguilera
  • Manuel Escabias
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Difierent functional logit models to estimate a multicategory response variable from a functional predictor will be formulated in terms of difierent types of logit transformations as base-line category logits for nominal responses or cumulative, adjacent-categories or continuation-ratio logits for ordinal responses. Estimation procedures of functional logistic regression based on functional PCA of sample curves will be generalized to the case of a multicategory response. The true functional form of sample curves will be reconstructed in terms of basis expansions whose coeficients will be estimated from irregularly distributed discrete time observations.


Ordinal Response Logit Transformation Functional Principal Component Analysis Functional Principal Component Binary Logit Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agresti, A.: Categorical Data Analysis. Second edition, Wiley: New York. (2002).MATHCrossRefGoogle Scholar
  2. [2]
    Aguilera, A. M. Escabias, M. and Valderrama, M. J.: Using principal components for estimating logistic regression with high-dimensional multicollinear data. Compu-tational Statistics and Data Analysis. 50 (8), 1905-1924 (2006).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Cardot, H., R. Faivre and Goulard, M.: Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data. Journal of Applied Statistics. 30 (10), 1185-1199 (2003).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Cardot, H. and Sarda, P.: Estimation in generalized linear models for functional data via penalized likelihood. Journal of Multivariate Analysis. 92, 24-41 (2005).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Escabias, M., Aguilera, A. M. and Valderrama, M. J.: Principal component estima-tion of functional logistic regression: discussion of two di erent approaches. Journal of Nonparametric Statistics. 16 (3-4), 365-384 (2004).MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Escabias, M., Aguilera, A. M. and Valderrama, M. J.: Modelling environmental data by functional principal component logistic regression. Environmetrics. 16 (1), 95-107 (2005).CrossRefMathSciNetGoogle Scholar
  7. [7]
    Escabias, M. Aguilera, A. M. and Valderrama, M. J.: Functional PLS logit regression model. Computational Statistics and Data Analysis. 51 (10), 4891-4902 (2007).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    James, G. M.: Generalized linear models with functional predictors. Journal of the Royal Statistical Society, Series B. 64 (3), 411-432 (2002).MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Marx, B.D. and P.H.C. Eilers.: Generalized linear regression on sampled signals and curves. A p-spline approach. Technometrics. 41, 1-13 (1999).CrossRefGoogle Scholar
  10. [10]
    Muller, H-G. and StadtMüller, U.: Generalized functional linear models. The Annals of Statistics. 33 (2), 774-805 (2005).CrossRefMathSciNetGoogle Scholar
  11. [11]
    Ocaña, F.A., Aguilera, A.M. and Escabias, M.: Computational considerations in functional principal component analysis. Computational Statistics. 22 (3), 449-466 (2007).CrossRefMathSciNetGoogle Scholar
  12. [12]
    Ramsay, J. O. and Silverman, B. W.: Functional Data Analysis. Second edition, Springer-Verlag: New York. (2005).Google Scholar
  13. [13]
    Ratcli e, S. J., Leader, L. R. and Heller, G. Z.: Functional data analysis with ap- plication to periodically stimulated foetal heart rate data. II: functional logistic regression. Statistics in medicine. 21 (8), 1115-1127 (2002).CrossRefGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2008

Authors and Affiliations

  • Ana Aguilera
    • 1
  • Manuel Escabias
    • 1
  1. 1.Department of StatisticsO.R. University of GranadaSpain

Personalised recommendations