Robust Nonparametric Estimation for Functional Data

  • Christophe Crambes
  • Laurent Delsol
  • Ali Laksaci
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

It is well known that robust estimation provides an alternative approach to classical methods which is not unduly afiected by the presence of outliers. Recently, these robust estimators have been considered for models with functional data. In this talk, we focus on asymptotic properties of a conditional nonparametric estimation of a real valued variable with a functional covariate. We present results dealing with convergence in probability, asymptotic normality and L q errors.


Asymptotic Normality Robust Estimator Functional Data Analysis Functional Principal Component Analysis Uniform Integrability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Attouch, A. Laksaci. and E. Ould-Sa.:ïd. Asymptotic distribution of robust esti-mator for functional nonparametric models, Prépublication, LMPA No 314 Janvier (2007). Submitted.Google Scholar
  2. [2]
    N. Azzeddine, A. Laksaci, E. Ould-Sa.:ïd. On the robust nonparametric regression estimation for functional regressor, Statist. and Probab. Lett. (2007), Accepted under minor revision.Google Scholar
  3. [3]
    P. Besse, H. Cardot and F. Ferraty.: Simultaneous nonparametric regressions of unbalanced longitudinal data. Comput. Statist. Data Anal. 24, 255-270 (1997).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Boente, R. Fraiman.: Asymptotic distribution of robust estimators for nonpara-metric models from mixing processes. Ann. Statist. 18, 891-906 (1990).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    B. Cadre.: Convergent estimators for the L1 -median of a Banach valued random variable. Statistics. 35, 509-521 (2001). MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Cardot, C. Crambes, P. Sarda.: Quantiles regression when the covariates are functions. J. of Nonparam. Stat. 17, 841-856 (2005). MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    G. Collomb, W. Härdle.: Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations. Stoch. Proc. Appl. 23, 77-89 (1986). MATHCrossRefGoogle Scholar
  8. [8]
    L. Delsol.: Régression non-paramétrique fonctionnelle: Expressions asymptotiques des moments. (2007). Submitted.Google Scholar
  9. [9]
    F. Ferraty and P. Vieu.: The functional nonparametric model and application to spectrometric data. Comp. Statist. 17, 545-564 (2002). MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Ferraty and P. Vieu.: Nonparametric functionnal data analysis. Springer-Verlag. New York. (2006). Google Scholar
  11. [11]
    P.J. Huber.: Robust estimation of a location parameter. Ann. of the Math. Statist. 35,73-101 (1964). MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    N. Laïb and E. Ould-Saïd.: A robust nonparametric estimation of the autoregression function under an ergodic hypothesis. Canad. J. Statist. 28, 817-828 (2000).MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    R. Robinson.: Robust Nonparametric Autoregression. Lecture Notes in Statistics, Springer-Verlag. New York. 26, 247-255 (1984). Google Scholar
  14. [14]
    J. Ramsay and B.W. Silverman.: Applied functional data analysis. Springer-Verlag, New York. (2002). CrossRefGoogle Scholar
  15. [15]
    J. Ramsay and B.W. Silverman.: Functional data analysis (Sec. Ed.). Springer-Verlag, New York. (2005). Google Scholar

Copyright information

© Physica-Verlag Heidelberg 2008

Authors and Affiliations

  • Christophe Crambes
    • 1
  • Laurent Delsol
    • 2
  • Ali Laksaci
    • 3
  1. 1.Montpellier II, place Eugène BataillonFrance
  2. 2.Université Toulouse IIIFrance
  3. 3.Univ. Djillali LiabèsAlgérie

Personalised recommendations