Recent Results on Random and Spectral Measures with Some Applications in Statistics

  • Alain Boudou
  • Emmanuel Cabral
  • Yves Romain
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

In this talk we define and study first the convolution product of two spectral measures and secondly the tensor and convolution products of random measures. Then we propose some applications in stationary processes statistics.


Unitary Operator Spectral Measure Inverse Fourier Transform Random Measure Stationary Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Azencott R., Dacunha-Castelle D.: Séries d'observations irrégulières. Modélisation et prévision. Techniques Stochastiques, Masson (1984).Google Scholar
  2. [2]
    Birman M., Solomjak M.: Tensor product of a nite number of spectral measures is always a spectral measure. Integ. Eq. Oper. Th. 24, 179-187 (1996).MATHCrossRefGoogle Scholar
  3. [3]
    Benchikh T., Boudou A., Romain Y.: Mesures aléatoires opératorielle et banachique. Application aux séries stationnaires. C.R. Acad. Sci. Paris. SérieI, Math. 345, 345-348 (2007).MATHMathSciNetGoogle Scholar
  4. [4]
    Boudou A.: Interpolation de processus stationnaires. C.R. Acad. Sci. Paris, SérieI, Math. 33, 12, 1021-1024 (2003).MathSciNetGoogle Scholar
  5. [5]
    Boudou A.: Groupe d'opérateurs unitaires déduit d'une mesure spectrale - une ap-plication. C.R. Acad. Sci. Paris. SerieI, Math., 344, 12, 791-794 (2007).MATHMathSciNetGoogle Scholar
  6. [6]
    Boudou A., Dauxois J.: Principal component analysis for a stationary random func-tion de ned on a locally compact abelian group. J. Multivariate Anal. 51, no. 1, 1-16 (1994).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Boudou A., Romain Y.: On spectral and random measures associated to continuous and discrete time processes. Stat. Proba. Letters. 59, 145-157 (2002).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Boudou A., Romain Y.: Sur l'intégrale par rapport à une mesure aléatoire tensorielle et ses applications aux processus stationnaires multidimensionnels. Publi. Labo. Stat. Proba., 08-05, 1-27, Univ. P. Sabatier, Toulouse. (2005).Google Scholar
  9. [9]
    Dauxois J., Romain Y., Viguier S.: Tensor products and statistics. Lin. Alg. Appl. 210, 59-88 (1994).MATHCrossRefGoogle Scholar
  10. [10]
    Halmos, P.R. Introduction to Hilbert space and theory of spectral multiplicity. Reprint of the second (1957) edition. AMS Chelsea Publishing, Providence, RI (1998).MATHGoogle Scholar
  11. [11]
    Riesz F., Nagy B.SZ.: Leçons d'analyse fonctionnelle. Gauthiers-Villars, Paris (1968).Google Scholar
  12. [12]
    Schae er H.H.: Banach lattices and positive operators. Springer-Verlag, Berlin Hei-delberg New York (1974).Google Scholar

Copyright information

© Physica-Verlag Heidelberg 2008

Authors and Affiliations

  • Alain Boudou
    • 1
  • Emmanuel Cabral
    • 1
  • Yves Romain
    • 1
  1. 1.Institut de Mathématiques de Toulouse Equipe LSPUniversité Paul SabatierFrance

Personalised recommendations