Preliminary Results of a Multi-Agent Traffic Simulation for Berlin

  • Ulrike Beuck
  • Marcel Rieser
  • David Strippgen
  • Michael Balmer
  • Kai Nagel


This paper provides an introduction to multi-agent traffic simulation. Metropolitan regions can consist of several million inhabitants, implying the simulation of several million travelers, which represents a considerable computational challenge. We reports on our recent case study of a real-world Berlin scenario. The paper explains computational techniques necessary to achieve results. It turns out that the difficulties there, because of data availability and because of the special situation of Berlin after the reunification, are considerably larger than in previous scenarios that we have treated.


Physical Layer Activity Chain Physical Level Transportation Research Record Traffic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arentze T, Timmermans H (2000) Albatross: A Learning-Based Transportation Oriented Simulation System. EIRASS (European Institute of Retailing and Services Studies), TU Eindhoven, NLGoogle Scholar
  2. Arentze T, Timmermans H (2005) ALBATROSS — Version 2.0 — A learning based transportation oriented simulation system. EIRASS (European Institute of Retailing and Services Studies), TU Eindhoven, NLGoogle Scholar
  3. Arnott R, de Palma AD, Lindsey R (1993) A structural model of peak-period congestion: A traffic bottleneck with elastic demand. The American Economic Review 83:1:161–179Google Scholar
  4. Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51:2:1035–1042CrossRefGoogle Scholar
  5. Beazley D, Lomdahl P, Gronbech-Jensen N, Giles R, Tamayo P (1995) Parallel algorithms for short-range molecular dynamics. In: Stauffer D (ed) Annual reviews of computational physics III. World Scientific, Singapure, pp 119–176.Google Scholar
  6. Beckman RJ, Baggerly KA, McKay MD (1996) Creating synthetic base-line populations. Transportion Research Part A — Policy and Practice 30:6: 415–429CrossRefGoogle Scholar
  7. Ben-Akiva M, Lerman SR (1985) Discrete choice analysis. The MIT Press, Cambridge, MAGoogle Scholar
  8. Ben-Akiva M, Bierlaire M, Koutsopoulos H, Mishalani R (1998) Dynamit: A simulation-based system for traffic prediction. DACCORS Short Term Forecasting Workshop, The Netherlands. See also Scholar
  9. Bhat C, Guo J, Srinivasan S, Sivakumar A (2004) A comprehensive econometric microsimulator for daily activity-travel patterns (cemdap). Transportation Research Record 1894: 57–66CrossRefGoogle Scholar
  10. Bowman J, Bradley M, Shiftan Y, Lawton T, Ben-Akiva M (1999) Demonstration of an activity-based model for Portland. In World Transport Research: Selected Proceedings of the 8th World Conference on Transport Research 1998, vol. 3. Elsevier, Oxford, pp 171–184Google Scholar
  11. Brockfeld E, Kühne R, Skabardonis A, Wagner P (2003) Towards a benchmarking of microscopic traffic flow models. Transportation Research Record 1852: 124–129CrossRefGoogle Scholar
  12. Cascetta E, Papola A (1998) An implicit availability/perception random utility model for path choice. In Proceedings of TRISTAN III, vol. 2. San Juan, Puerto RicoGoogle Scholar
  13. Cetin N, Burri A, Nagel K (2003) A large-scale agent-based traffic microsimulation based on queue model. In Proceedings of Swiss Transport Research Conference (STRC). Monte Verita, CH. URL www.strc.chGoogle Scholar
  14. Chang G, Mahmassani H, Herman R (1985) A macroparticle traffic simulation model to investigate peak-period commuter decision dynamics. Transportation Research Record 1005:107–120Google Scholar
  15. Charypar D, Nagel K (2005) Q-learning for flexible learning of daily activity plans. Transportation Research Record 1935: 163–169CrossRefGoogle Scholar
  16. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Physics Reports 329:4–6: 199–329CrossRefGoogle Scholar
  17. de Palma A, Marchal F (2002) Real case applications of the fully dynamic METROPOLIS tool-box: An advocacy for large-scale mesoscopic transportation systems. Networks and Spatial Economics 2:4: 347–369CrossRefGoogle Scholar
  18. Dijkstra E (1959) A note on two problems in connexion with graphs. Numerische Mathematik 1: 269–271CrossRefGoogle Scholar
  19. DYNAMIT www page (accessed 2005) URL Scholar
  20. DYNASMART www page (accessed 2005) URL www.dynasmart.comGoogle Scholar
  21. Emmerink R (1996) Information and pricing in road transport. Ph.D. thesis, Tinbergen Institute, Amsterdam, NLGoogle Scholar
  22. Esser J (1998) Simulation von Stadtverkehr auf der Basis zellularer Automaten. Ph.D. thesis, University of Duisburg, Germany. See also www.traffic.uni-duisburg.deGoogle Scholar
  23. Flötteröd G, Nagel K (2005) Some practical extensions to the cell transmission model. Paper 128, IEEE Intelligent Transportation Systems Conference, ViennaGoogle Scholar
  24. Flötteröd G, Nagel K (2006) Modeling and estimation of combined route and activity location choice. In: IEEE Intelligent Transportation Systems Conference. Toronto, Canada, pp 394–399. URL www.itsc2006.orgGoogle Scholar
  25. Gawron C (1998a) An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. International Journal of Modern Physics C 9:3: 393–407CrossRefGoogle Scholar
  26. Gawron C (1998b) Simulation-based traffic assignment. Ph.D. thesis, University of Cologne, Cologne, Germany. URL www.zaik.uni-koeln.deGoogle Scholar
  27. Gipps PG (1981) A behavioural car-following model for computer simulation. Transportation Research B 15: 105–111CrossRefGoogle Scholar
  28. Gloor C, Mauron L, Nagel K (2003) A pedestrian simulation for hiking in the Alps. In Proceedings of Swiss Transport Research Conference (STRC). Monte Verita, CH. URL www.strc.chGoogle Scholar
  29. Hall F, Agyemang-Duah K (1991) Freeway capacity drop and the definition of capacity. Transportation Research Record 1320: 91–98Google Scholar
  30. Helbing D (2001) Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73: 1067–1141CrossRefGoogle Scholar
  31. Helbing D, Hennecke A, Treiber M (1999) Phase diagram of traffic states in the presence of inhomogeneities. PRL 82:21: 4360–4363CrossRefGoogle Scholar
  32. Hofbauer J, Sigmund K (1998) Evolutionary games and replicator dynamics. Cambridge University Press, CambridgeGoogle Scholar
  33. Jara-Diaz SR, Guerra R (2003) Modeling activity duration and travel choice from a common microeconomic framework. In Proceedings of the meeting of the International Association for Travel Behavior Research (IATBR). Lucerne, Switzerland. See www.ivt.baug.ethz.chGoogle Scholar
  34. Jonnalagadda J N Freedman, Davidson W, Hunt J (2001) Development of microsimulation activity-based model for San Francisco: destination and mode choice models. Transportation Research Record 1777: 25–35CrossRefGoogle Scholar
  35. Jost D, Nagel K (2003) Probabilistic traffic flow breakdown in stochastic car following models. Transportation Research Record 1852: 152–158CrossRefGoogle Scholar
  36. Kerner B, Klenov S, Wolf D (2002) Cellular automata approach to three-phase traffic theory. J Physics A: Math General 35:47: 9971–10013CrossRefGoogle Scholar
  37. Kerner BS (1998) Experimental features of self-organization in traffic flow. Physical Review Letters 81: 3797–3800CrossRefGoogle Scholar
  38. Krauß S, Wagner P, Gawron C (1996) Continuous limit of the Nagel-Schreckenberg model. Phys Rev E 54:4: 3707–3712CrossRefGoogle Scholar
  39. Kutter E (1984) Integrierte Berechnung städtischen Personenverkehrs — Dokumentation der Entwicklung eines Verkehrsberechnungsmodells für die Verkehrsentwicklungsplanung Berlin (West). Arbeitsberichte zur Integrierten Verkehrsplanung, TU Berlin, BerlinGoogle Scholar
  40. Kutter E, Mikota HJ (1990) Weiterentwicklung des Personenverkehrsmodells Berlin auf der Basis der Verkehrsentstehungsmatrix 1986 (BVG). Tech. rep., Untersuchung im Auftrag des Senators für Arbeit, Verkehr und Betriebe, BerlinGoogle Scholar
  41. Kutter E, Mikota HJ, Rümenapp J, Steinmeyer I (2002) Untersuchung auf der Basis der Haushaltsbefragung 1998 (Berlin und Umland) zur Aktualisierung des Modells “Pers Verk Berlin / RPlan”, sowie speziell der Entwicklung der Verhaltensparameter ′86–′98 im Westteil Berlins, der Validierung bisheriger Hypothesen zum Verhalten im Ostteil, der Bestimmung von Verhaltensparametern für das Umland. Draft of the final report, Sponsored by the “Senatsverwaltung für Stadtentwicklung Berlin”, Berlin/HamburgGoogle Scholar
  42. Lighthill MJ, Whitham JB (1955) On kinematic waves. I: Flow movement in long rivers. II: A Theory of traffic flow on long crowded roads. Proceedings of the Royal Society A 229: 281–345CrossRefGoogle Scholar
  43. MATSIM www page (accessed 2005) MultiAgent Transportation SIMulation. URL www.matsim.orgGoogle Scholar
  44. Meister K, Balmer M, Axhausen K, Nagel K (2006) planomat: A comprehensive scheduler for a large-scale multi-agent transportation simulation. In Proceedings of the meeting of the International Association for Travel Behavior Research (IATBR). Kyoto, Japan. See www.iatbr.orgGoogle Scholar
  45. Miller E, Roorda M (2003) A prototype model of household activity/travel scheduling. Transportation Research Record 1831: 114–121CrossRefGoogle Scholar
  46. Nagel K, Nelson P (2005) A critical comparison of the kinematic-wave model with observational data. In: Mahmassani H (ed) Transportation and Traffic Theory — Flow, Dynamics and Human Interaction. Elsevier, Amsterdam, pp 145–164Google Scholar
  47. Nagel K, Rickert M (2001) Parallel implementation of the TRANSIMS micro-simulation. Parallel Computing 27:12: 1611–1639CrossRefGoogle Scholar
  48. Pendyala R (accessed 2005) Phased implementation of a multimodal activity-based travel demand modeling system in florida. URL Project number 0510812 (BA496)Google Scholar
  49. Rümenapp J, Steinmeyer I (2006) Activity-based demand generation: Anwendung des Berliner Personenverkehrsmodells zur Erzeugung von Aktivitätenketten als Input für Multi-Agenten-Simulationen. Working Paper 06–09, Fachgebiet Verkehrssystemplanung und Verkehrstelematik, TU Berlin, Berlin, Germany. URL www.vsp.tu-berlin.deGoogle Scholar
  50. Salvini P, Miller E (2005) ILUTE: An operational prototype of a comprehensive microsimulation model of urban systems. Networks and Spatial Economics 5:2: 217–234CrossRefGoogle Scholar
  51. Schuster HG (1995) Deterministic Chaos: An Introduction. Wiley-VCH Verlag GmbHGoogle Scholar
  52. Stauffer D (1991) Computer simulations of cellular automata. J Phys A 24: 909–927CrossRefGoogle Scholar
  53. Strauch D, Hertkorn G, Wagner P, Kühne R (2002) Neue Ansätze zu einer mikroskopischdynamischen Verkehrs-und Flächennutzungsplanung im verbundprojekt ILUMASS. In: Tavangarian D, Grützner R (eds) Simulationstechnik, Frontiers in Simulation, vol 12, pp 511–516. SCS Publishing HouseGoogle Scholar
  54. SUMO www page (accessed 2005) URL sumo.sourceforge.orgGoogle Scholar
  55. TRANSIMS www page (accessed 2005) TRansportation ANalysis and SIMulation System. URL Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  56. Waddell P, Borning A, Noth M, Freier N, Becke M, Ulfarsson G (2003) Microsimulation of urban development and location choices: Design and implementation of UrbanSim. Networks and Spatial Economics 3:1: 43–67CrossRefGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg and Accademia di Architettura, Mendrisio, Switzerland 2008

Authors and Affiliations

  • Ulrike Beuck
    • 1
  • Marcel Rieser
    • 1
  • David Strippgen
    • 1
  • Michael Balmer
    • 2
  • Kai Nagel
    • 1
  1. 1.Transport System Planning and Transport Telematics (VSP)TU BerlinGermany
  2. 2.Institute for Transport Planning and Systems (IVT)ETH ZurichSwitzerland

Personalised recommendations