Advertisement

Self-Organization and Optimization of Pedestrian and Vehicle Traffic in Urban Environments

  • Dirk Helbing
  • Anders Johansson
  • Stefan Lämmer

Abstract

Self-organization is not only a feature of urban evolution, but also found within urban environments. Here, we will focus on three aspects: (i) spatiotemporal patterns in pedestrian flows and their implications for optimized pedestrian facilities, (ii) trail formation of pedestrians and their consequences for improved way systems, and (iii) a self-organization approach to an adaptive control of traffic lights. This chapter will discuss the problems, modelling concepts, results, and solutions, while the mathematical formulation and analysis of the models is presented elsewhere.

Keywords

Traffic Light Vehicle Traffic Pedestrian Flow Passing Direction Trail System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AlGadhi SAH, Mahmassani HS, Herman R (2002) A speed-concentration relation for bidirectional crowd moments with strong interaction In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 3–20Google Scholar
  2. Ando K, Oto H, Aoki T (1988) Forecasting the flow of peolple. Railway Research Review 45: 8–14Google Scholar
  3. Batty M, Desyllas J, Duxbury E (2003) The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades. Int. J. Geographical Information Science 17:7: 673–697CrossRefGoogle Scholar
  4. Brockfeld E, Barlovic R, Schadschneider A, Schreckenberg M (2001) Optimizing traffic lights in a cellular automaton model for city traffic. Physical Review E 64 (056132)CrossRefGoogle Scholar
  5. Daamen W, Hoogendoorn SP (2003) Experimental Research of pedestrian walking behaviour. Transportation Research Records 1828: 20–30CrossRefGoogle Scholar
  6. Diakaki C, Dinopoulou V, Aboudolas K, Papageorgiou M, Ben-Shabat E, Seider E, Leibov A (2003)Extension and new applications of the traffic-responsive urban control strategy: Coordinated signal control for urban networks. Transportation Research Board 1856: 202–211CrossRefGoogle Scholar
  7. Dzubiella J, Löwen H (2002) Pattren formation in driven colloidal-mixtures: tilted driving forces and re-entrant crystal freezing. J. Phys.: Cond. Mat. 14: 9383–9396CrossRefGoogle Scholar
  8. Escobar R, de la Rosa A (2003) Architectural Design for the Survival Optimization of Panicking Fleeing Victims. Paper presented at the 7th European Conference on Artificial Life, Dortmund, Germany, September 14–17, http://www.dd.chalmers.se/armando/panic/report.htmGoogle Scholar
  9. Fouladvand ME, Nematollahi M (2001) Optimization of green-times at an isolated urban crossroads. European Physical Journal B 22:3: 395–401CrossRefGoogle Scholar
  10. Goffman E (1971) Relations in Public: Microstudies in the Public Order. Basic, New YorkGoogle Scholar
  11. Goldstone RL, Jones A, Roberts MA (2005) Group path formation. Preprint Indiana University http://cognitrn.psych.indiana.edu/rgoldsto/pdfs/paths.pdfGoogle Scholar
  12. Helbing D (1991) A mathematical model for the behavior of pedestrians. Behavioral Science 36: 298–310CrossRefGoogle Scholar
  13. Helbing D (1997) Verkehrsdynamik. Springer, BerlinGoogle Scholar
  14. Helbing D (1998) Pedestrian Dynamics and Trail Formation In: Schreckenberg M, Wolf DE (eds) Traffic and Granular Flow’ 97. Springer, Singapore, pp 21–36Google Scholar
  15. Helbing D (2003) A section-based queueing-theoretical model for congestion and travel time analysis in networks. Journal of Physics A 36: L593–L598CrossRefGoogle Scholar
  16. Helbing D (2004) Traffic dynamics. In: Radons G, Neugebauer R (eds) Nonlinear Dynamics of Production Systems. Wiley-VCH, Weinheim, pp 85–105CrossRefGoogle Scholar
  17. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys. Rev. E 51: 4282–4286CrossRefGoogle Scholar
  18. Helbing D, Vicsek T (1999) Optimal Self-Organization. New Journal of Physics 1:13: 1–17Google Scholar
  19. Helbing D, Keltsch J, Molnár P (1997a) Modelling the evolution of trial systems. Nature 388: 47–49CrossRefGoogle Scholar
  20. Helbing D, Schweitzer F, Keltsch J, Molnár P (1997b) Activer walker model for the formation of human and animal trail systems. Physical Review E 56: 2527–2539CrossRefGoogle Scholar
  21. Helbing D, Farkas I, Vicsek T (2000a) Freezing by Heating in a Driven Mesoscopic System. Physical Review Letters 84: 1240–1243CrossRefGoogle Scholar
  22. Helbing D, Farkas I, Vicsek T (2000b) Simulating dynamical features of escape panic. Nature 407: 487–490CrossRefGoogle Scholar
  23. Helbing D, Molnár P, Farkas I, Bolay K (2001) Self-organizing pedestrian movement. Environment and Planning B 28: 361–383CrossRefGoogle Scholar
  24. Helbing D, Witt U, Lämmer S, Brenner T (2004) Network-induced oscillatory behavoir in material flow networks and irregular business cycles. Physical Review E 70 (056118)CrossRefGoogle Scholar
  25. Helbing D, Buzna L, Johansson A, Werner T (2005a) Self-organized pedestrian crowd dynamics: experiments, simulations and design solutions. Transportation Science 39: 1–24CrossRefGoogle Scholar
  26. Helbing D, Lämmer S, Lebacque JP (2005b) Self-organized control of irregular perturbed network traffic. In: Deissenberg C, Hartl RF (eds) Optimal Control and Dynamic Games. Springer, BerlinGoogle Scholar
  27. Helbing D, Schönhof M, Stark HU, Holyst JA (2005c) How individuals learn to take turns: emergence of alternating cooperation in a congestion game and the Prisoner’s Dilemma. Advances in Complex Systems 8:1: 87–116CrossRefGoogle Scholar
  28. Helbing D, Johansson A, Buzna L (2005d) Pedestrian dynamics and evacuation: Empirical results and design solutions. In: Mahmassani HS (ed) Flow, Dynamics and Human Interaction. Proceedings of the 16th International Symposium of Transportation and Traffic Theory (ISTTT 16), Elsevier Science, AmsterdamGoogle Scholar
  29. Hoogendoorn SP, Bovy PHL, Daamen W. (2001) Microscopic pedestrian wayfinding and dynamics modeling. In: Schreckemberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 123–154Google Scholar
  30. Huang DW, Huang WN (2003) Traffic signal synchronization. Physical Review E 67 (056124)CrossRefGoogle Scholar
  31. Jiang R, Helbing D, Shukla PK, Wu QS (2005) Inefficient emergent oscillations in intersecting driven many-particle flows. Preprint http://arXiv.org/abs/cond-mat/0501595.Google Scholar
  32. Humpert K, Becker S, Brenner K, Gangler A (1996) Entwicklung grossstädtischer Agglomerationen: Stadtfeldtypen und Stadtfeldcollagen. In: Teichmann K, Wilke J (eds) Prozeß und Form “Natürlicher Konstruktionen”. Der Sonderforschungsbereich 230. Ernst & Sohn, Berlin, pp 172–193Google Scholar
  33. Keltsch J (1996) Selbstorganisation von Wegen durch “Active Walkers”. Master’s thesis, Universität StuttgartGoogle Scholar
  34. Molnár P (1996) Modellierung und Simulation der Dynamik von Fußgängerströmen. Shaker, AachenGoogle Scholar
  35. Oeding D (1963) Anlagen des Fußgängerverkehrs, Straßenbau und Straßenverkehrstechnik. Bundesministerium für Verkehr, Abt. Straßenbau, BonnGoogle Scholar
  36. Quinn MJ, Metoyer RA, Hunter-Zaworski K (2003) Parallel Implementation of the Social Forces Model. In: Galea ER (ed) Pedestrian and Evacuation Dynamics. Proccedings of the 2nd International Congress CMS Press, London, pp 63–72Google Scholar
  37. Schaur E (1991) Ungeplante Siedlungen. Krämer, StuttgartGoogle Scholar
  38. Schweitzer F (2003) Brownian Agents and Active Particles. Springer, BerlinGoogle Scholar
  39. Schweitzer F, Schimansky-Geier L (1994) Clustering of “active” walkers in a two component system. Physica A 206:3–4: 359–379CrossRefGoogle Scholar
  40. Virkler MR, Elayadath S (1994) Pedestrian Density Characteristics and Shockwaves. In: Akçelik R (ed) Proceedings of the Second International Symposium on Highway Capacity, Vol. 2. Transportation Research Board, Washington, D.C., pp 671–684Google Scholar
  41. Werner T, Helbing D (2003) The Social Force Pedestrian Model Applied to Real Life Scenarios. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. Proccedings of the 2nd International Congress. CMS Press, London, pp 17–26Google Scholar

Copyright information

© Physica-Verlag Heidelberg and Accademia di Architettura, Mendrisio, Switzerland 2008

Authors and Affiliations

  • Dirk Helbing
    • 1
  • Anders Johansson
    • 1
  • Stefan Lämmer
    • 1
  1. 1.Institute for Transport and EconomicsDresden University of TechnologyGermany

Personalised recommendations