Skip to main content

Determining Relevant Input Dimensions for the Self Organizing Map

  • Conference paper
Neural Networks and Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 19))

Abstract

We propose a method to determine the relevance of the different input dimensions for a self organizing map (SOM). First, a growing self organizing map is adapted to the data. Afterwards, the effect of the input dimensions on the clustering or the topology of the SOM, respectively, is computed and the data dimensions which are ranked low are pruned. The algorithm is applied to real life satellite image data. The results are verified via visualizing the data in RGB-images as well as explicitely computing the classification error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-U. Bauer and K. R. Pawelzik. Quantifying the neighborhood preservation of Self-Organizing Feature Maps. IEEE Trans. on Neural Networks, 3 (4): 570–579, 1992.

    Article  Google Scholar 

  2. H.-U. Bauer and T. Villmann. Growing a Hypercubical Output Space in a Self-Organizing Feature Map. IEEE Transactions on Neural Networks, 8 (2): 218–226, 1997.

    Article  Google Scholar 

  3. B. Fritzke. Growing grid: a self-organizing network wirh constant neighborhood range and adaptation strength. Neural Processing Letters, 2 (5): 9–13, 1995.

    Article  Google Scholar 

  4. P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica, 9D: 189–208, 1983.

    MathSciNet  MATH  Google Scholar 

  5. B. Hammer and T. Villmann. Input pruning for neural gas architectures. In: M.Verleysen, editro, ESANN’2001, pages 271–276, 2001.

    Google Scholar 

  6. T. Honkela, S. Kaski, T. Kohonen, and K. Lagus. Self-organizing maps of very large document collections: Justification for the WEBSOM method. In I. Balderjahn, R. Mathar, and M. Schader, editors, Classification, Data Analysis, and Data Highways, pages 245252. Springer, Berlin, 1998.

    Google Scholar 

  7. S. Kaski. Dimensionality reduction by random mapping: fast similarity computation for clustering. In Proceedings of IJCNN’92, pages 413-. 418, 1998.

    Google Scholar 

  8. T. Kohonen. Self-Organizing Maps. Springer, 1997.

    Google Scholar 

  9. T. Martinetz and K. Schulten. Topology representing networks. Neural Networks, 7 (3): 507–522, 1993.

    Article  Google Scholar 

  10. U. Matecki. Automatische Merkmalsauswahl fiir Neuronale Netze mit Anwendung in der pixelbezogenen Klassifikation von Bildern. Shaker, 1999.

    Google Scholar 

  11. A. Meyering and H. Ritter. Learning 3D-shape-perception with local linear maps. In Proceedings of IJCNN’92, pages 432–436, 1992.

    Google Scholar 

  12. R. Nock and M. Sebban. Sharper bounds for the hardness of prototype and feature selection. In H. Arimura, S. Jain, and A. Sharma, editors, Algorihmic Learning Theory, pages 224–237. Springer, 2000.

    Google Scholar 

  13. A. Ultsch. Self-organizing neural networks for visualization and classification. In O. Opitz, B. Lausen, and R. Klar, editors, Information and Classification, pages 307313, London, UK, 1993. Springer.

    Google Scholar 

  14. T. Villmann, R. Der, M. Herrmann, and T. Martinetz. Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks, 8 (2): 256–266, 1997.

    Article  Google Scholar 

  15. T. Villmann and E. Merenyi. Extensions and modifications of SOM and its application in satellite remote sensoring processing. In H. Bothe and R.Rojas, editors, Neural Computation 2000, pages 765–771, Zürich, 2000. ICSC Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bojer, T., Hammer, B., Strickert, M., Villmann, T. (2003). Determining Relevant Input Dimensions for the Self Organizing Map. In: Rutkowski, L., Kacprzyk, J. (eds) Neural Networks and Soft Computing. Advances in Soft Computing, vol 19. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1902-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1902-1_58

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0005-0

  • Online ISBN: 978-3-7908-1902-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics