On sup — * Compositions of Fuzzy Implications

  • Michał Baczyński
  • Józef Drewniak
  • Jolanta Sobera
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 19)


Recently we have examined properties of sup-min compositions of fuzzy implications [3]. However, in many applications, another connectives are used for composition of fuzzy implications. Now, we generalize these results to the case of sup —* composition with a triangular norm *.


Distributive Lattice Binary Operation Fuzzy Logic Controller Truth Table Zero Element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baczynski, M., Drewniak, J. (1999): Conjugacy classes of fuzzy implication, In: Reusch, B. (Eds.): Computational Intelligence: Theory and Applications, Springer-Verlag, Berlin, (LNCS Vol. 1625), 287–298.Google Scholar
  2. 2.
    Baczylíski, M., Drewniak, J. (2000): Monotonic fuzzy implications, In: Szczepaniak, P., Lisboa, P., Kacprzyk, J. (Eds.): Fuzzy Systems in Medicine, PhysicaVerlag, Heidelberg, (Studies in Fuzzines and Soft Computing, Vol. 41), 90–111.Google Scholar
  3. 3.
    Baczynski, M., Drewniak, J., Sobera, J. (2001): Semigroups of fuzzy implications, Tatra Mt. Math. Publ. 21, 61–71.MathSciNetMATHGoogle Scholar
  4. 4.
    Baldwin, J.F., Pilsworth, B.W. (1980): Axiomatic approach to implication for approximate reasoning with fuzzy logic, Fuzzy Sets Syst. 3, 193–219.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Drewniak, J., Kula, K. (2002): Generalized compositions of fuzzy relations, Presented in FSTA 2002, Liptovsky Jan, Slovakia.Google Scholar
  6. 6.
    Cordon, O., Herrera, F., Peregrin, A. (1997): Applicability of the fuzzy operators in the design of fuzzy logic controllers, Fuzzy Sets Syst. 86, 15–41.MATHCrossRefGoogle Scholar
  7. 7.
    Fodor, J.C., Roubens, M.C. (1994): Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer, Dordrecht.MATHCrossRefGoogle Scholar
  8. 8.
    Goguen, J.A. (1967): L-fuzzy sets, J. Math. Anal. Appl. 18, 145–174.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Klement, E.P., Mesiar, R., Pap, E. (2000): Triangular Norms, Kluwer, Dordrecht.MATHGoogle Scholar
  10. 10.
    Schweizer, B., Sklar, A. (1961): Associative functions and statistical triangle inequalities, Publ. Math. Debrecen 8, 169–186.MathSciNetMATHGoogle Scholar
  11. 11.
    Zadeh, L.A. (1965): Fuzzy sets, Inform. Control 8, 338–353.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michał Baczyński
    • 1
  • Józef Drewniak
    • 1
    • 2
  • Jolanta Sobera
    • 1
  1. 1.Institute of MathematicsUniversity of SilesiaBankowa 14Poland
  2. 2.Institute of MathematicsUniversity of RzeszówRejtana 16aPoland

Personalised recommendations