Skip to main content

Radial Basis Function Neural Networks: Theory and Applications

  • Conference paper
Neural Networks and Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 19))

Abstract

Essential theory and main applications of feed-forward connectionist structures termed radial basis function (RBF) neural networks are given. Universal approximation and Cover’s theorems are outlined that justify powerful RBF network capabilities in function approximation and data classification tasks. The methods for regularising RBF generated mappings are addressed also. Links of these networks to kernel regression methods, density estimation, and nonlinear principal component analysis are pointed out. Particular attention is put on discussing different RBF network training schemes, e.g. the constructive method incorporating orthogonalisation of RBF kernels. Numerous, successful RBF networks applications in diverse fields such as signal modelling, non-linear time series prediction, identification of dynamic systems, pattern recognition, and knowledge discovery are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broomhead D.S., Lowe D. (1988) Multivariable functional interpolation and adaptive networks, Complex Systems, 2, 321–355

    MathSciNet  MATH  Google Scholar 

  2. Micchelli C.A. (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constructive Approximation, 2, 11–22

    Article  MathSciNet  MATH  Google Scholar 

  3. Powell M.J.D. (1985) Radial basis functions for multivariable interpolation: a review, IMA Conference on Algorithms for the Approximation of Functions and Data, Shrievenham, U.K., 143–167

    Google Scholar 

  4. Duch W., Jankowski N. (1999) Survey of neural network transfer functions, Neural Computing Surveys, 2, 163–212

    Google Scholar 

  5. Strumillo P., Kaminski W. (2001) Neural networks with orthogonal transfer functions, 9th European Symposium on Artificial Neural Networks“, ESANN’2001, Bruges, Belgium, April 25–27 2001, 95–100

    Google Scholar 

  6. Ajzerman M.A., Browerman E.M., Rozonoer L.I. (1976) Image recognition: the method of potential functions, WNT, Warszawa (in Polish)

    Google Scholar 

  7. Moody J.E., Darken, C.J. (1989) Fast learning in networks of locally-tuned processing units, Neural Computation, 1, 281–294

    Article  Google Scholar 

  8. Park J., Sandberg L.W. (1993) Approximation and radial-basis-function networks, Neural Computation, 5, 305–316.

    Article  Google Scholar 

  9. Hunt K.J., Haas R., Murray-Smith R.M. (1996) Extending the functional equivalence of radial basis function neural networks and fuzzy inference systems, IEEE Trans. Neural Networks, 7, 3, 776–781

    Article  Google Scholar 

  10. Strumillo P. (2002) Matching pursuit of basis in two—layer neural networks for signal approximation, accepted for publication in the International Journal of Computers, Systems and Signals.

    Google Scholar 

  11. Strumillo P., Kaminski W. (1999) Evaluation of air pollution field in urban area using regularised RBF neural networks, Proceedings of the IVth Conference on neural networks and their application, Zakopane, 716–721

    Google Scholar 

  12. Whitehead B.A., Choate T.D. (1996) Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction, IEEE Trans. Neural Networks, 7, 4, 869–880

    Article  Google Scholar 

  13. Yingwei L., Saratchandran P., Sundararajan N. (1998) Performance evaluation of sequential minimal radial basis function neural network learning algorithm, IEEE Trans. Neural Networks, 9, 2, 308–318

    Article  Google Scholar 

  14. Strumillo P., Kaminski W. (2001) Orthogonalisation procedure for training radial basis functions neural networks, Bulletin of the Polish Academy of Sciences, Technical Sciences, 49, No. 3, 479–491

    Google Scholar 

  15. Cheng E.S., Chen S., Mulgrew M. (1996) Gradient radial basis function networks for nonstationary nonlinear time series prediction, IEEE Trans. Neural Networks, 7, 1, 190–194

    Article  Google Scholar 

  16. Fabri S., Kadirkamanathan V. (1996) Dynamic structure neural networks for stable adaptive control of nonlinear systems, IEEE Trans. Neural Networks, 7, 5, 1151–1167

    Article  Google Scholar 

  17. Luo W. Moris A.J, Martin, E.B., Karim, M.N. (1996) Control relevant identification of a pH waste water neutralisation process using adaptive radial basis function networks, Computer and Chemical Engineering, 20, 2, S 1017-S 1022

    Google Scholar 

  18. Krzyzak A., Lindner T., Lugosi G. (1996) Nonparametric estimation and classification using radial basis function nets and empirical risk minimization, IEEE Trans. Neural Networks, 7, 2, 475–487

    Article  Google Scholar 

  19. Chen S., Mulgrew B., Grant P.M. (1993) A clustering algorithm for digital communications channel equalization using radial basis function networks, IEEE Trans. Neural Networks, 3, 4, 570–579

    Article  Google Scholar 

  20. Haykin S. (1999) Neural networks, a comprehensive foundation, Prentice Hall.

    Google Scholar 

  21. Jain A.K., R.P.W. Duin, J. Mao (2000) Statistical pattern recognition: a review, IEEE Trans. Pattern Analysis and Machine Intelligence, 22, 1, 4–37

    Article  Google Scholar 

  22. Scholkopf B., Smola A., Muller K.R. (1998) Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10, 1299–1319

    Article  Google Scholar 

  23. Lowe D. (1999) Radial basis networks and statistics, Ch. 3, 65–95, in Statistics and neural networks, Ed. Kay J.W., Titterington D.M., Oxford University Press, Oxford

    Google Scholar 

  24. Kaminski W., Strumillo P. (1997) Kernel Orthonormalisation in Radial Basis Function Neural Networks“, IEEE Trans. Neural Networks, 8, no. 5, 1177–1183

    Article  Google Scholar 

  25. Rybowski R. (1998) Classification of incomplete feature vector by radial basis function networks, Pattern Recognition Letters, 19, 14, 1257–1264

    Article  Google Scholar 

  26. Pulido A., Ruisanchez, Rius F.X. (1999) Radial basis function applied to the classification of UV-visible spectra, Analitycal Chemica Acta, 388, 3, 273–281

    Article  Google Scholar 

  27. Musavi M.T., Bryant R.J. et al. (1998) Mouse chromosome classification by radial basis function network with fast orthogonal search, 11, 4, 769–777

    Google Scholar 

  28. West D. (2000) Neural network credit scoring models, Computers and Operations Research, 27, 11–12, 1131–1152

    Google Scholar 

  29. Kaminski W., Witkowska D. (2001) Firm classification: Artificial Neural Network, Approach, 10`h International Conference on System Modeling Control, Zakopane, Poland, 1, 362–368

    Google Scholar 

  30. Kumar P.C., Saratchandran P., Sundararajan N. (2000) Minimal radial basis function neural networks for nonlinear channel equalisation, IEE Proc.-Vis. Image Process. 147, 5, 428–435

    Article  Google Scholar 

  31. Cichosz P. (2000) Systems that learn (in Polish), WNT, Warszawa

    Google Scholar 

  32. Koszlaga J., Strumillo P. (2000) Rule extraction from trained radial basis function neural networks, Colloquia in Artificial Intelligence, 2000, Lodz, Poland, 97–106

    Google Scholar 

  33. Girosi F., Jones M., Poggio T. (1995) Regularization theory and neural network architectures, Neural Computations, 7, 219–269

    Article  Google Scholar 

  34. Chen S., Cowan C.F.N., Grant P.M. (1991) Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Networks, 2, 2, 302–309

    Article  Google Scholar 

  35. Billings S.A., Zheng G.L. (1995) Radial basis network configuration using genetic algorithms, Neural Networks, 8, 6, 877–890

    Article  Google Scholar 

  36. Chen S., Wu Y., Luk B.L. (1999) Combined genetic algorithm optimisation and regularised orthogonal least squares learning for radial basis function networks, IEEE Trans. Neural Networks, 10, 5, 1239–1243

    Article  Google Scholar 

  37. Girosi F., Anzelotti G. (1994) Rates of convergence for radial basis functions and neural networks“, in Artificial neural networks for Speech and Vision, R. Mammone ( Ed. ), Chapman Hall, 97–114

    Google Scholar 

  38. Beliczyúski B. (2000) Incremental function approximation by neural networks (in Polish), WPW, Warszawa

    Google Scholar 

  39. Koszlaga J., Strumillo P. (2002) Evolutionary algorithms vs. other methods for constructive optimisation of RBF network kernels, accepted for presentation at the Sixth International Conference on Neural Networks and Soft Computing

    Google Scholar 

  40. Karayannis N. B., Mi G.W. (1997) Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques, IEEE Trans. Neural Networks, 8, 6, 1492–1505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strumiłło, P., Kamiński, W. (2003). Radial Basis Function Neural Networks: Theory and Applications. In: Rutkowski, L., Kacprzyk, J. (eds) Neural Networks and Soft Computing. Advances in Soft Computing, vol 19. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1902-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1902-1_14

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0005-0

  • Online ISBN: 978-3-7908-1902-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics