Traffic Flow Simulation — Cellular Automata with Fuzzy Rules Approach

  • Marcin Burzyński
  • Waldemar Cudny
  • Witold Kosiński
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 19)


A discrete automaton model with fuzzy rules to simulate one-way traffic flow is introduced. Results of simulations are consistent with the so-called fundamental diagram (flow versus density), as is observed in the real free-way traffic. Fuzzy controller approach makes possible to include driver’s individual characteristics and provides a new point of view in the further traffic flow research.


Cellular Automaton Fuzzy Rule Traffic Flow Fuzzy Controller Transition Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burzyíiski, M. (2001): Symulowanie ukladu drapieica-ofiara za pomoc4 automatu komórkowe. M.Sc. Thesis, Akademia Bydgoska im. Kazimierza Wielkiego, Wydzial Matematyki, Techniki i Nauk Przyrodniczych, BydgoszczGoogle Scholar
  2. 2.
    Kulakowski, K. (2000): Automaty komórkowe. “jak”, Krak6wGoogle Scholar
  3. 3.
    Droz, M., Pekalski A. (2000): Coexistence in predator-prey system. to be published in Phys. Rev. E.Google Scholar
  4. 4.
    Nagbrski, Z. (2001): Modelowanie przewodzenia ciepla za pomocg arkusza kalkulacyjnego, MRS+Excel->KM3R. Oficyna Wydawnicza Politechniki Warszawskiej, WarszawaGoogle Scholar
  5. 5.
    Lipowski, A. (1999): Oscillatory behavior in a lattice prey-predator system. Physical Review E, 60 (5), 5179–5184MathSciNetCrossRefGoogle Scholar
  6. 6.
    Nagel, K., Schreckenberg M. (1992): A cellular automaton model for freeway traffic. J. Phys. I France, 2, 2221–2229CrossRefGoogle Scholar
  7. 7.
    Schadschneider, A., Schreckenberg, M. (1993): Cellular automaton models and traffic flow. J. Phys. A: Math. Gen. 26, 679–683CrossRefGoogle Scholar
  8. 8.
    Karafyllidis, I. (1997): A model for the prediction of oil slick movement and spreading using cellular automata. Environment International,23 (6), 839–850Google Scholar
  9. 9.
    Ermentrout, G. B., Edelstein-Keshet, L. (1993): Cellular automata approaches to biological modeling. J. Theor. Biol., 160, 97–133CrossRefGoogle Scholar
  10. 10.
    Wolfram, S. (Fall 1983 ): Cellular automata. Los Alamos Science, 9, 2–21Google Scholar
  11. 11.
    Wang, X., Wang, F. (2000): A driver’s Utility Function and its Properties. UCI-ITS-WP-0014, Institute of Transport Studies and Department of Civil & Environmental Engineering University of California.Google Scholar
  12. 12.
    Lachwa, A. (2001): Rozmyty swiat zbiorów, liczb, relacji, faktow, regal i decyzji. EXIT, WarszawaGoogle Scholar
  13. 13.
    Prigogine, I., Herman, R. (1971): Kinetic Theory of Vehicular Traffic. Elsevier, New YorkMATHGoogle Scholar
  14. 14.
    Lighthill, M. J., Whitman, G. B. (1955): Proc. R. Soc. Lond.,A 229 317Google Scholar
  15. 15.
    Piegat, A. (1999): Modelowanie i sterowanie rozmyte. EXIT, WarszawaGoogle Scholar
  16. 16.
    Hall, F. L., Brian, L. A., Gunter, M. A. (1986): Transport Rev.,A 3,197Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marcin Burzyński
    • 1
  • Waldemar Cudny
    • 1
    • 2
  • Witold Kosiński
    • 3
  1. 1.Institute of Environmental Mechanics and Applied Computer ScienceBydgoszcz UniversityBydgoszczPoland
  2. 2.Institute of Fundamental Technological Research, IPPT PANPolish Academy of SciencesWarszawaPoland
  3. 3.Research CenterPolish-Japanese Institute of Information TechnologyWarszawaPoland

Personalised recommendations