From Semantic to Syntactic Approaches to Information Combination in Possibilistic Logic

  • Salem Benferhat
  • Didier Dubois
  • Henri Prade
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 12)


This paper proposes syntactic combination rules for merging uncertain propositional knowledge bases provided by different sources of information, in the framework of possibilistic logic. These rules are the counterparts of combination rules which can be applied to the possibility distributions (defined on the set of possible worlds), which represent the semantics of each propositional knowledge base. Combination modes taking into account the levels of conflict, the relative reliability of the sources, or having reinforcement effects are considered.


Belief Revision Combination Rule Possibility Distribution Combination Mode Possibilistic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abidi M.A., Gonzalez R.C. (eds.) (1992) Data Fusion in Robotics and Machine Intelligence. Academic Press, New York.MATHGoogle Scholar
  2. Baral C., Kraus S., Minker J., Subrahmanian (1992) Combining knowledge bases consisting in first order theories. Computational Intelligence, 8 (1), 45–71.Google Scholar
  3. Benferhat S., Cayrol C., Dubois D., Lang J., Prade H. (1993) Inconsistency management and prioritized syntax-based entailment. Proc. of the 13th Inter. Joint Conf. on Artificial Intelligence (IJCAI’93), Chambéry, France, Aug. 28-Sept. 3, 640–645.Google Scholar
  4. Benferhat S., Dubois D., Prade H. (1995) How to infer from inconsistent beliefs without revising?. Proc. of the 14th Inter. Joint Conf. on Artificial Intelligence (IJCAI’95), Montréal, Canada, Aug. 20–25, 1449–1455.Google Scholar
  5. Boldrin L. (1995) A substructural connective for possibilistic logic In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (Proc. of Europ. Conf. ECSQARU’95) C. Froidevaux, J. Kohlas, eds.), Springer Verlag, Fribourg, 60–68.CrossRefGoogle Scholar
  6. Boldrin L., Sossai C. (1995) An algebraic semantics for possibilistic logic. Proc of the 11th Conf. Uncertainty in Artifucial Intelligence (P. Besnard, S. Hank, eds.) Morgan Kaufmann, San Francisco, CA, 27–35.Google Scholar
  7. Cholvy F. (1992) A logical approach to multi-sources reasoning. In: Applied Logic Conference: Logic at Work, Amsterdam.Google Scholar
  8. Dubois D., Lang J., Prade H. (1987) Theorem proving under uncertainty — A possibility theory-based approach. Proc. of the 10th Inter. Joint Conf. on Artificial Intelligence, Milano, Italy, August, 984–986.Google Scholar
  9. Dubois D., Lang J., Prade H. (1992) Dealing with multi-source information in possibilistic logic. Proc. of the 10th Europ. Conf. on Artificial Intelligence (ECAI’92) Vienna, Austria, Aug. 3–7, 38–42.Google Scholar
  10. Dubois D., Lang J., Prade H. (1994a) Automated reasoning using possibilistic logic: Semantics, belief revision and variable certainty weights. IEEE Trans. on Knowledge and Data Engineering, 6 (1), 64–71.CrossRefGoogle Scholar
  11. Dubois D., Lang J., Prade H. (1994b) Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming — Vol 3: Nonmonotonic Reasoning and Uncertain Reasoning (Dov M. Gabbay, C.J. Hogger, J.A. Robinson, D. Nute eds.), Oxford Univ. Press, 439–513.Google Scholar
  12. Dubois D., Prade H. (1988a) Possibility Theory — An Approach to Computerized Processing of Uncertainty. Plenum Press, New York.MATHCrossRefGoogle Scholar
  13. Dubois D., Prade H. (1988b) Representation and combination of uncertainty with belief functions and possibility. Computational Intelligence, 4, 244–264.CrossRefGoogle Scholar
  14. Dubois D., Prade H. (1988e) Default reasoning and possibility theory. Artificial Intelligence, 35, 243–257.MathSciNetMATHCrossRefGoogle Scholar
  15. Dubois D., Prade H. (1988d) On the combination of uncertain or imprecise pieces of information in rule-based systems. A discussion in a framework of possibility theory. Int. Journal of Approximate Reasoning, 2, 65–87.Google Scholar
  16. Dubois D., Prade H. (1990) Aggregation of possibility measures. In: Multiperson Decision Making Using Fuzzy Sets and Possibility Theory (J. Kacprzyk, M. Fedrizzi, eds. ), Kluwer Academic Publ., 55–63.Google Scholar
  17. Dubois D., Prade H. (1992) Combination of fuzzy information in the framework of possibility theory. In: Data Fusion in Robotics and Machine Intelligence ( M.A. Abidi, R.C. Gonzalez, eds.) Academic Press, New York, 481–505.Google Scholar
  18. Dubois D., Prade H. (1994) Possibility theory and data fusion in poorly informed environments. Control Engineering Practice, 2 (5), 811–823.CrossRefGoogle Scholar
  19. Dubois D., Prade H. (1996) Belief revision with uncertain inputs in the possibilistic setting. Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence (E. Horvitz, F. Jensen, eds.), Portland, Oregon, Aug. 1–4, 1996, 236–243Google Scholar
  20. Flamm J., Luisi T. (Eds.) (1992) Reliability Data and Analysis. Kluwer Academic Publ.Google Scholar
  21. Kelman A. (1996) Modèles flous pour l’agrégation de données et l’aide à la décision. Thèse de Doctorat, Université Paris 6, France.Google Scholar
  22. Matzkevich I., Abramson B. (1992) The topological fusion of Bayes nets. Proc. of the 8th Conf. on Uncertainty in Artificial Intelligence (D. Dubois, M.P. Wellman, B. D’Ambrosio, P. Smets, eds.), Stanford, CA, July 17–19, 191–198.Google Scholar
  23. Matzkevich I., Abramson B. (1993) Some complexity considerations in the combination of belief networks. Proc. of the 9th Conf. on Uncertainty in Artificial Intelligence (D. Heckerman, A. Mamdani, eds.), Washington, DC, July 9–11, 152–158.Google Scholar
  24. Shafer G. (1976) A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, NJ.Google Scholar
  25. Shoham Y. (1988) Reasoning About Change — Time and Causation from the Standpoint of Artificial Intelligence. The MIT Press, Cambridge, MA.Google Scholar
  26. Williams M.A. (1996) Towards a practical approach to belief revision: Reason-based change. Proc. of the 5th Conf. on Knowledge Representation and Reasoning Principles (KR’96), Cambridge, MA, Nov. 1996.Google Scholar
  27. Yager R.R. (1987) On the Dempster-Shafer framework and new combination rules. Information Sciences, 41, 93–138.MathSciNetMATHCrossRefGoogle Scholar
  28. Yager R. R. (1991) Non-monotonic set-theoritic operators. Fuzzy Sets and Systems 42, 173–190.MathSciNetMATHCrossRefGoogle Scholar
  29. Zadeh L.A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Salem Benferhat
    • 1
  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse (I.R.I.T.)Université Paul SabatierToulouseFrance

Personalised recommendations