Advertisement

Aggregation in Decision Making with Belief Structures

  • Maria Teresa Lamata
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 12)

Abstract

We consider the problem of decision making in environments in which there exists some uncertainty about the state of nature. A general approach to the representation of uncertainty using the Dempster-Shafer belief structure is presented.

Keywords

Decision Maker Belief Function Efficient Alternative Payoff Vector Belief Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.Bellman and L.A.Zadeh, (1970) “Decision making in a fuzzy environment”. Management Science, 17, pp. 141–164.MathSciNetCrossRefGoogle Scholar
  2. [2]
    M.J. Bolanos, M.T. Lamata and S. Moral, (1988) Decision making problems in a general environment. Fuzzy Sets and Systems 18, 135–144.MathSciNetCrossRefGoogle Scholar
  3. [3]
    A.P. Dempster (1968) A generalization of Bayesian inference, Journal of the Royal Statistical Society, 205–247.Google Scholar
  4. [4]
    P.C. Fishburn (1970) Utility theory for decision making. John Wiley: New York.MATHGoogle Scholar
  5. [5]
    M.T. Lamata (1986) Problemas de decision con informacion general. Ph.D. thesis. Universidad de Granada.Google Scholar
  6. [6]
    R.D. Luce and H. Raiffa (1967) Games and Decisions: Introduction and Critical Survey. Wiley: New York.Google Scholar
  7. [7]
    M. O’Hagan (1997) Aggregating template rule antecedents in real-time expert systems with fuzzy set logic. Int. Journal of Man-Machine Studies (to appear).Google Scholar
  8. [8]
    H.T. Nguyen and E.A. Walker (1994) On decision making using belief functions, in Advances in the Dempster-Shafer theory of Evidence. ( M. Fedrizzi, J. Kacprzyk, R.R. Yager, eds). Wiley: New York, pp. 311–330.Google Scholar
  9. [9]
    S.B. Richmond (1968) Operations Research for Management Decisions, Ronald Press: New York.Google Scholar
  10. [10]
    M. Roubens and Ph. Vincke (1989) Preference Modeling. Springer-Verlag: Berlin.Google Scholar
  11. [11]
    G. Shafer (1976) A Mathematical Theory of Evidence. Princeton University Press: Princeton, N.J.MATHGoogle Scholar
  12. [12]
    J.Q. Smith (1988) Decision Analysis: A Bayesian Approach.Google Scholar
  13. [13]
    T.M. Strat (1994) Decision analysis using belief functions, in Advances in the Dempster-Shafer theory of Evidence: ( M. Fedrizzi, J. Kacprzyk, R.R. Yager, eds). Wiley: New York, pp. 275–310.Google Scholar
  14. [14]
    R.R. Yager (1992) Decision making under Dempster-Shafer uncertainties. Int. Journal of Intelligent Systems 20, pp. 233–245.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Maria Teresa Lamata
    • 1
  1. 1.Departamento de Ciencias de la Computación e Inteligencia ArtificialUniversidad de GranadaGranadaSpain

Personalised recommendations