Using Priorities in Aggregation Connectives

  • Antoine Kelman
  • Ronald R. Yager
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 12)


We present new multicriteria aggregation methods based on OWA operators and on the management of priorities between different criteria. These methods are parameterized in order to be used in various different application contexts. For each method, we present a learning process and a neural representation.


Aggregation Method Fuzzy Subset Aggregation Operator Neural Representation Global Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Dubois, D. and Prade, H., “A review of fuzzy sets aggregation connectives”, Information Sciences 36, 85–121, 1985.MathSciNetMATHCrossRefGoogle Scholar
  2. [2].
    Dubois, D. and Prade, H., Fuzzy Sets and Systems: Theory and Applications, Academic Press: New York, 1980.MATHGoogle Scholar
  3. [3].
    Dubois, D., “Triangular norms for fuzzy sets”, in Proceedings of the 2nd International Symposium of Fuzzy Sets, Linz, 39–68, 1981.Google Scholar
  4. [4].
    Zadeh, L. A., “A computational approach to fuzzy quantifiers in natural languages”, Computing and Mathematics with Applications 9, 149–184, 1983.MathSciNetMATHCrossRefGoogle Scholar
  5. [5].
    Sugeno, M., “Theory of fuzzy integrals and its application”, Doctoral Thesis, Tokyo Institute of Technology, 1974.Google Scholar
  6. [6].
    Grabisch, M., “Application des mesures floues et intégrales floues”, Proceedings of the “Applications des ensembles flous”, Nimes, France, 139–147, 1992.Google Scholar
  7. [7].
    Yager, R. R., “On ordered weighted averaging aggregation operators in multi-criteria decision making”, IEEE Transactions on Systems, Man and Cybernetics 18, 183–190, 1988.MathSciNetMATHCrossRefGoogle Scholar
  8. [8].
    Grabisch, M. and Sugeno, M., “Multi-Attribute Classification using Fuzzy Integral”, Proceedings of the 1st FUZZ’IEEE Congress, San Diego, USA, 47–54, 1992.Google Scholar
  9. [9].
    Filev, D. P. and Yager, R. R., “On the issue of OWA operator weights”, Technical Report# MII-1319, Machine Intelligence Institute, Iona College, 1993.Google Scholar
  10. [10].
    Yager, R. R., “Nonmonotonic set theoretic operations”, Fuzzy Sets and Systems 42, 173–190, 1991.MathSciNetMATHCrossRefGoogle Scholar
  11. [11].
    Dubois, D. and Prade, H., “Combination of information in the framework of possibility theory”, in Data Fusion in Robotics and Machine Intelligence, edited by Al Abidi, M., Academic Press: New York, 1991.Google Scholar
  12. [12].
    Glorennec, P.-Y., “Logique Neuro-Floue”, Proceedings of the “Applications des ensembles flous”, Nîmes, France, 219–230, 1993.Google Scholar
  13. [13].
    Keller, J. M., Yager, R. R. and Tahani, H., “Neural network implementation of fuzzy logic”, Fuzzy Sets and Systems 45, 1–12, 1992.MathSciNetMATHCrossRefGoogle Scholar
  14. [14].
    Dubois, D. and Prade, H., “Weighted minimum and maximum operations in fuzzy sets theory”, Information Sciences 39, 205–210, 1986.MathSciNetMATHCrossRefGoogle Scholar
  15. [15].
    Yager, R. R., “OWA Neurons: A new class of fuzzy neurons”, Proceedings Int. Joint Conference on Neural Networks, Vol. I, Baltimore, I: 226–231, 1992.Google Scholar
  16. [16].
    Yager, R. R., “Higher structures in multi-criteria decision making”, International Journal of Man-Machine Studies 36, 553–570, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Antoine Kelman
    • 1
  • Ronald R. Yager
    • 2
  1. 1.LAFORIAUniversity of Paris-VIParis Cedex 05France
  2. 2.Machine Intelligence InstituteIona CollegeNew RochelleUSA

Personalised recommendations