Uncertain Data Aggregation in Classification and Tracking Processes

  • Alain Appriou
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 12)


To identify or localize a target, multisensor analysis has to be able to recognize one situation out of a set of possibilities. To do so, it uses measurements of more or less doubtful origin and prior knowledge that is understood to be often poorly defined, and whose validity is moreover difficult to evaluate under real observation conditions. The present synthesis proposes a generic modeling of this type of information, in the form of mass sets of the theory of evidence, with closer attention being paid to the most common case where the data originates from statistical processes. On the one hand robust target classification procedures can be achieved by applying appropriate decision criteria to these mass sets, on the other hand they can be integrated rigorously into a target tracking process, to reflect the origin of the localization measurements better. In all cases, the solutions found are placed in relation to those of the main competitive approaches currently used.


False Alarm Probability Evidence Theory Resolution Cell Focal Element Noise Covariance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Appriou: Formulation et traitement de l’incertain en analyse multi-senseurs. Conférence invitée, 14ème Colloque GRETSI, Juan-les-Pins, 13–16 septembre 1993.Google Scholar
  2. 2.
    A. Appriou: Probabilités et incertitude en fusion de données multi-senseurs. Revue Scientifique et Technique de la Défense, n°11, 1991–1, pp 27–40.Google Scholar
  3. 3.
    A. Appriou: Intérêt des théories de l’incertain en fusion de données. Conférence invitée, Colloque International sur le Radar, Paris, 24–28 avril 1989.Google Scholar
  4. 4.
    G. Shafer: A mathematical theory of evidence. Princeton University Press, Princeton, New Jersey, 1976.Google Scholar
  5. 5.
    R.R. Yager: Entropy and specificity in a mathematical theory of evidence. International Journal General Systems, Vol. 9, 1983, pp 249–260.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    R.R. Yager: A general approach to decision making with evidential knowledge. Uncertainty in Artificial Intelligence, L.N. Kanal & J.F. Lemmer éd., Elsevier Science Publishers, B.V. North-Holland, 1986.Google Scholar
  7. 7.
    D. Dubois, H. Prade: Théorie des possibilités: application à la représentation des connaissances en informatique“, Masson, Paris, 1988.Google Scholar
  8. 8.
    F. Janez, A. Appriou: Théorie de l’évidence et cadres de discernement non exhaustifs. Revue Traitement du Signal, Vol. 13, n° 2, 1996.Google Scholar
  9. 9.
    F. Janez, A. Appriou: Fusion of sources defined on different non-exhaustive frames. IPMU’ 96, Granada, Spain, July 1–5 1996.Google Scholar
  10. 10.
    V. Nimier, A. Appriou: Utilisation de la théorie de Dempster-Shafer pour la fusion d’informations. GRETSI, 15ème Colloque sur le Traitement du Signal et des Images, Juan-les Pins, 18–22 septembre 1995.Google Scholar
  11. 11.
    M.C. Perron-Gitton: Apport d’une approche neuro-floue dans un contexte de fusion de données basé sur la théorie de l’évidence. IPMU’ 94, Paris, 4–8 juillet 1994.Google Scholar
  12. 12.
    A. Appriou: Multiple signal tracking processes. Aerospace Science and Technology, n° 2, February 1997.Google Scholar
  13. 13.
    Y. Bar Shalom, T.E. Fortmann Tracking and data association. Academic Press, New York, 1988.Google Scholar
  14. 14.
    D. Lerro, Y. Bar Shalom: Interacting multiple model tracking with target amplitude feature. IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, n° 2, april 1993.Google Scholar
  15. 15.
    J. Dezert: Vers un nouveau concept de navigation autonome d’engin. Un lien entre le filtrage à association probabiliste de données et la théorie de l’évidence. Thèse de doctorat, Université Paris-XI, 27 septembre 1990, ONERA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alain Appriou
    • 1
  1. 1.ONERAChâtillon CedexFrance

Personalised recommendations