Fuzzy Linguistic Methods for the Aggregation of Complementary Sensor Information

  • G. Mauris
  • E. Benoit
  • L. Foulloy
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 12)


The problem of the aggregation of complementary information is a crucial point in the monitoring of large intelligent systems. This paper deals with the cases in which there is no analytical mathematic model to derive new information from the basic measurements. Our artificial intelligence approach consists in using linguistic knowledge provided by experts. In the second section, we explain within the framework of the fuzzy subset theory how the numeric and linguistic representations could be used in the measurement aggregation problems. Next, the third section proposes an interpolation mechanism that creates a fuzzy partition of the numeric multi-dimensional space of the basic features. In section four, we present a formal symbolical representation of fuzzy If ... Then ... rules for the combination of basic features. The proposed methods are then applied in section five to the problem of the navigation of a mobile robot equipped with two ultrasonic range finding sensors, giving the proximity, the orientation, and the danger of an obstacle by the aggregation of the distance information provided by each one.


Membership Function Mobile Robot Characteristic Point Fuzzy Subset Multisensor Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ren C. Luo, M.H. Lin, R.S. Scherp, “Dynamic multisensor data fusion system, for intelligent robots”, IEEE J. of Robotics and Automation, Vol. 4, No 4, Aug. 1988, pp. 386–396.CrossRefGoogle Scholar
  2. [2]
    J.K. Aggarwal, Y.F. Wang, “Sensor fusion in robotics systems”, Control and Dynamic Systems, Vol. 39, 1991, pp. 435–462.CrossRefGoogle Scholar
  3. [3]
    Ren C. Luo, Michael G. Kay, “Multisensor integration and fusion in intelligent systems”, IEEE trans. on Systems, Man, and Cybernetics, Vol. 19, No 5, Oct. 1989, pp. 901–931.CrossRefGoogle Scholar
  4. [4]
    T.C. Henderson, E. Shilcrat, “Logical sensor systems”, J. of Robotic Systems, 1984, pp. 169–193.Google Scholar
  5. [5]
    J. Manyika, H. Dunant-White, Data fusion and sensor management, Ellis Horwood Ed., New York, 1994.Google Scholar
  6. [6]
    S.S. Iyengar, R.L. Kayshyap, R.N. Madan, “Distributed sensor networks–introduction to the special section”, IEEE/SMC, Vol. 21, No 5, Sept-Oct. 1991, pp. 1027–1031.Google Scholar
  7. [7]
    Lauber A., ’Intelligent multisensor fusion“,Int. Conf. on Fault Disgnosis, TOOLDIAG 93, Toulouse, France, April 5–7 1993, pp. 140–144.Google Scholar
  8. [8]
    T.D. Garvey, “A survey of AI approaches to the the integration of information”, Proc. of SPIE, Vol. 782, 1987, pp. 68–82.CrossRefGoogle Scholar
  9. [9]
    D. Dubois, H. Prade, “A review q ffuzzy set aggregation connectives”, Information Science, 36, 1985, pp. 85–121.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    R.R. Yager, “Connectives and quantifiers in fuzzy sets”, Fuzzy Sets and Systems, 40, 1991, pp. 39–75.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    M. Grabisch, “Fuzzy integral in multi-criteria decision making”, Fuzzy Sets ans Systems, 69, 1995, pp. 279–298.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    T. Fukuda, K. Shimojima, F. Arai, H. Matsuura, “Multi-sensor integration system based on fuzzy inference and neural network for industrial application”, IEEE Int. Conf. on fuzzy systems, San Diego, USA, March 1992, pp. 907–914Google Scholar
  13. [13]
    D.A. Dornfeld, “Sensor fusion”, In handbook of Intelligent Sensors for Industrial Automation, Nello Zuech Ed., Addison-Wesley, 1991, pp. 419–508.Google Scholar
  14. [14]
    L.A. Zadeh, “Quantitative fuzzy semantics”, Information Sciences, Vol. 3, 1971, pp. 159–176.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Krantz D.H., Luce R.D., Suppes P., Tversky A., Foundations of measurement, Academic press, New York, Vol. 1, 1971.Google Scholar
  16. [16]
    Finkelstein L., “Measurement: fundamentals principles”,in: Ed. Finkelstein L. and Grattan K.T.V, Concise Encyclopedia of Measurement and Instrumentation,1994, pp. 201–205.Google Scholar
  17. [17]
    Zadeh L. A., “The concept of a linguistic variable and its application to approximate reasoning”, Information Sciences, part 1:Vol 8, No 3, pp. 199–249, part 2: Vol 8,pp. 301–357, part 3:Vol 9, pp. 4380, 1975.Google Scholar
  18. [18]
    G. Mauris, E. Benoit, L. Foulloy, “Fuzzy symbolic sensors: from concepts to applications”, Measurement, Vol. 12, No 4, 1994, pp. 357–384.CrossRefGoogle Scholar
  19. [19]
    Preparata F.P., Shamos M.I., Computational geometry: an introduction, Ed. Springer-Verlag, 1985.Google Scholar
  20. [20]
    Bowyer A., “Computing Dirichlet tessellations ”, The Computer Journal,Vol. 24, No 2, 1991, pp. 162166.Google Scholar
  21. [21]
    George P.L., Hermeline F., “Maillage de Delaunay d’un polyèdre convexe en dimension d. Extension ù un polyèdre quelconque”,Research report INRIA, N° 969, Feb.1989, 43 pages.Google Scholar
  22. [22]
    G. Mauris, E. Benoit, Foulloy L., “Fuzzy sensors for the fusion of information”, Proc. of the IMEKO XIII, Turin, Italy, Sept. 1994, pp. 1009–1014.Google Scholar
  23. [23]
    Benoit E., Mauris G., Foulloy L., “A . fuzzy colour sensor”, Proc. of the IMEKO XIII World Congress, Turin, Italy, Sept. 1994, pp. 1015–1020.Google Scholar
  24. [24]
    Foulloy L., Galichet S., “Typology of fuzzy controllers” in Theoretical Aspects of Fuzzy Control, (H.T. Nguyen, M. Sugeno, R. Tang, R. Yager Eds ), Wiley, 1995, pp. 65–90.Google Scholar
  25. [25]
    A. 011ero, A. Garcia-Cerezo, “Design of fuzzy logic control systems. Applications to robotics”,Proc. of the European Workshop on Industrial Fuzzy Control and Applications (IFCA 93), Terrassa, Spain, April 93.Google Scholar
  26. [26]
    S. Ishikawa, “A method of indoor mobile robot navigation by using fuzzy control”,IEEE Int. Workshop on Intelligent Robots and Systems, Osaka, Nov. 1991, pp. 10/3–10/9.Google Scholar
  27. [27]
    H. Graham, “A fuzzy logic approach for safety and collision avoidance in robotic system”, Proc. of Int. Conf. on human aspects of advanced manufacturing and hybrid automation, Amsterdam, Aug. 1992, pp. 493–498Google Scholar
  28. [28]
    Yen, N. Pfluger, B. Lea, M. Murphy, Y. Jani, “ Employing fuzzy logic for navigation and control in an autonomous mobile system”, Proc. of the American Control Conference, San francisco, June 1993, pp. 1850–1854.Google Scholar
  29. [29]
    K.T. Song, J.C. Tai, “Fuzzy navigation of a mobile robot”, IEEE/RJS Int. Conf. on Intelligent Robots and Systems, Raleigh, July 1992, pp. 621–627.Google Scholar
  30. [30]
    R. Kuc, “Three dimensional docking using qualitative sonar”, IEEE/RJS Int. Conf. on Intelligent Robots and Systems, July 1993, pp. 480–488.Google Scholar
  31. [31]
    Mauris G., Benoit E., Foulloy L., “Ultrasonic smart sensors: the importance of the measurement principle”, Proc. of the IEEE/SMC, L. Touquet, France, October 1993, Vol. III pp. 55–60.Google Scholar
  32. [32]
    A. Bagchi, H. Hatwal, “Fuzzy logic based techniques for motion planning of u robot manipulator amongst unknown moving obstacle”, Robotica, Vol. 10, 1992, pp. 563–573.CrossRefGoogle Scholar
  33. [33]
    G.Mauris, Benoit E., Foulloy L., “An intelligent ultrasonic range, finding sensor, for robotics”,World Congress IFAC 96, San francisco, USA, July 1996, Vol A, pp. 487–492.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • G. Mauris
    • 1
  • E. Benoit
    • 1
  • L. Foulloy
    • 1
  1. 1.LAMII/CESALPUniversité de SavoieAnnecyFrance

Personalised recommendations