Advertisement

Synthesis of Decision Rules for Object Classification

  • Jan G. Bazan
  • Hung Son Nguyen
  • Tuan Trung Nguyen
  • Andrzej Skowron
  • Jaroslaw Stepaniuk
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 13)

Abstract

We discuss two applications of logic to the problem of object classification. The first is related to an application of multi-modal logics to the automatic feature extraction. The second is concerned with inductive reasoning for discovering an optimal feature set with respect to the precision of classification and for improving the performance of decision algorithms. We also present an exemplary system for recognizing handwritten digits based on Boolean reasoning, rough set methods and feature discovery by applying multi-modal logic.

Keywords

Decision Rule Modal Logic Optical Character Recognition Decision Table Kripke Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AD92]
    Almuallim H., Dietterich T.G., Efficient algorithms for identifying relevant features, Proc. of the Ninth Canadian Conference on Artifitial Intelligence, University of British Columbia 1992, Vancouver, British Columbia, 38–45.Google Scholar
  2. [BSS94]
    Bazan J., Skowron A., Synak P., Dynamic Reducts as a tool for extracting laws from decision tables, In: Proc. of the International Symposium on Methodologies for Intelligent Systems, October 16–19, 1994, Charlotte, NC, Lecture Notes in Artificial Intelligence No. 869, (eds.) M. Zemankova, Z. Ras, Springer-Verlag, Berlin, 1994, 346–355.Google Scholar
  3. [BS94]
    Bazan J., Skowron A., Synak P., Discovery of decision rules from experimental data, Proceedings of the Third International Workshop on Rough Sets and Soft Computing (RSSC’94), November 1012, 1994, San Jose State University 1994, 526–533.Google Scholar
  4. [BK86]
    Bhatnager R.K., Kanal, L.N.: Handling uncertain information: A review of numeric and non-numeric methods. In: Uncertainty in Artificial Intelligence, (eds.) L.N. Kanal. and J.F. Lemmer, North - Holland, Amsterdam 1986.Google Scholar
  5. [BL85]
    Brachman R.J., Levesque H.J.: Readings in Knowledge Representation, Morgan Kaufinann 1985.Google Scholar
  6. [Br90]
    Brown F.M. Boolean Reasoning, Kluwer, Dordrecht 1990.MATHCrossRefGoogle Scholar
  7. [D92]
    Downton, A, C., Tregidgo, R.,W., S., Leedham, C., G., Hendrawan, Recorgnition of handwritten British postal addresses. From Pixels to Features III. Frontiers in Handwriting Recorgnition, (eds.) S. Impedovo and J.0.Simon, North-Holland 1992, 129–144.Google Scholar
  8. [Dr921.
    De Raedt L., Interactive Theory Revision. An Inductive Logic Programming Approach, Academic Press, 1992.Google Scholar
  9. [DP80]
    Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications, Academic Press, 1980.MATHGoogle Scholar
  10. [FÚ92]
    Fawcett T.E., Utgoff P.E.: Automatic feature generation for problem solving systems, In: Proc. Of Ninth International Workshop on Machine Learning (ML92) (ed.) D. Sleeman, Morgan Kaufmann, San Mateo, 1992, 144–153.Google Scholar
  11. [GB92]
    Grzymala-Busse J.W.: LERS- A System for learning from examples based on rough sets, In: Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory (ed.) R. Slowinski, Kluwer, Dordrecht 1992, 3–18.Google Scholar
  12. [GB93]
    Grzymala-Busse D.M., Grzymala-Busse J.W.: Comparison of machine learning and knowledge acquisition methods of rule induction based on rough sets, Proc. of the International Workshop on Rough Sets and Knowledge Discovery RSKD’93, Banff, Canada, October 12–15, 1993, 297–306.Google Scholar
  13. [HC84]
    Hughes G.E., Cresswell M.J.: A Companion to Modal Logic, Methuen London and New York 1984.Google Scholar
  14. [IOO92]
    Impedovo S., Occhinegro S., Ottaviano L., A new method for automatic reading of typed/handwritten numerals. In: From Pixels to Features III. Frontiers in Handwriting Recognition, (eds.) S. Impedovo and J.C.Simon, North-Holland 1992, 163–169.Google Scholar
  15. [K59]
    Kripke S.: A completeness proof in modal logic, J. Symbolic Logic 24, 1–14–1959.Google Scholar
  16. [K63]
    Kripke S.: Semantical analysis of modal logic I: normal propositional calculi, Zeitschrift für Mathematische Logic und Grundlagen der Mathematik 9, 67–96, 1963.MathSciNetMATHCrossRefGoogle Scholar
  17. [K86]
    Kittler J.: Feature selection and extraction, In: Handbook of pattern recognition and image processing, (eds.)Young and Fu, Academic Press, New York 1986Google Scholar
  18. [KM90]
    Kodratoff Y., Michalski R.: Machine learning: An Artificial Intelligence approach, vol. 3, Morgan Kaufieann, San Mateo, 1990.Google Scholar
  19. [KTM931.
    Kane R., Tchoumachenko I., Milgram M.: Extraction of knowledge from data using constrained neural networks, Proc. ECML’93, Lecture Notes in Artificial Intelligence vol. 667, Springer Verlag, Berlin, 1993.Google Scholar
  20. [MMS91]
    McMillan C., Mozer M.C., Smolensky P.: The connectionist science game: Rule extraction and refinement in neural network, Proc. of the 13-th Annual Conference on the Cognitive Science Society, Hilsdale, NJ (also as CU-CS-530–91, University of Colorado) 1991.Google Scholar
  21. [MCM83]
    Michalski R., Carbonell J, Mitchell T.: Machine learning: An Artificial Intelligence approach, vol. 1, Tioga, Palo Alto, 1983Google Scholar
  22. [MCM86]
    Michalski R., Carbonell J, Mitchell T.: Machine learning: An Artificial Intelligence approach, vol. 2, Morgan Kaufmann, Los Altos, 1986Google Scholar
  23. [MT94]
    Michalski R.,Tecuci G.: Machine learning: A Multistrategy approach, vol. 4, Morgan Kaufmann, San Mateo, 1994Google Scholar
  24. [Mu92]
    Muggelton S. (ed.): Inductive logic programming, Academic Press 1992Google Scholar
  25. [PR93]
    Pattern Recognition Vol.26 Number 3. Handwriting Processing and Recognition, Pergamon Press, March 1993Google Scholar
  26. [Pa82]
    Pawlak Z.: Rough sets, International Journal of Information and Computer Science 11 (1982) 344–356.MathSciNetGoogle Scholar
  27. [Pa911.
    Pawlak Z.: Rough sets: Theoretical aspects of reasoning about data, Kluwer, Dordrecht 1991.MATHGoogle Scholar
  28. [PS93]
    Pawlak Z., Skowron A.: A rough set approach for decision rules generation. ICS Research Report 23/93, Warsaw University of Technology, also In: Proc. of the IJCAI’93 Workshop W12: The management of Uncertaining in AI, France 1993.Google Scholar
  29. [SD90]
    Shavlik J.W., Dietterich T.: Readings in Machine Learning, Morgan Kaufmann, San Mateo, 1990.Google Scholar
  30. [Sh76]
    Shafer G.: Mathematical Theory of Evidence, Princeton University Press 1976.Google Scholar
  31. [SP90]
    Shafer G., Pearl J., Readings in Uncertain Reasoning, Morgan Kaufmann, San Mateo, California,1990.Google Scholar
  32. [SL90]
    Shrager J, Langley P, Computational methods of scientific discovery and theory formation, Morgan Kaufman, San Mateo, 1990.Google Scholar
  33. [SG94]
    Skowron A., Grzymala-Busse J.W.: From rough set theory to evidence theory. In: Advances in the Dempster-Shafer Theory of Evidence, (eds.) R.R.Yager, M. Fedrizzi and J. Kacprzyk, John Wiley and Sons, New York 1994, 193–236.Google Scholar
  34. [Sk90]
    Skowron A.: The rough sets theory and evidence theory. Fundamenta Informaticae 13, (1990), 245–262.MathSciNetMATHGoogle Scholar
  35. [S93a]
    Skowron A.: Boolean reasoning for decision rule generation, In: Proceedings of the 7-th International Symposium ISMIS’93, Trondheim, Norway 1993, (eds.): J. Komorowski and Z. Ras Lecture Notes in Artificial Intelligence, vol. 689, Springer-Verlag, Berlin, 1993, 295–305.Google Scholar
  36. [S93b]
    Skowron A.: A Synthesis of Decision Rules: Applications of Discemibility Matrices, Proceedings of the Conference on Intelligent Information Systems, Augustow, Poland, June 7–11, 1993.Google Scholar
  37. [S95]
    Skowron A.: Synthesis of decision systems from experimental data, In: Proc. SCAI-95 Fifth Scandinavian Conference on Artificial Intelligence, (eds) A.Aamodt, J. Komorowski, IOS Press 1995, 220–238.Google Scholar
  38. [SP97]
    Skowron A., Polkowski L.: Synthesis od decision systems from data tables, In: Rough Sets and Data Mining: Analysis of Imprecise Data, (eds.) T.Y. Lin and N. Cecerone, Kluwer 1997, 259–300.CrossRefGoogle Scholar
  39. [SS91]
    Skowron A., Stepaniuk J.: Towards an approximation theory of discrete problems, Fundamenta Informaticae vol. 15 (2) 1991, 187–208.MathSciNetMATHGoogle Scholar
  40. [SS91a] Skowron A., Stepaniuk J.: Searching for Classifiers In:, Proceedings of the First World Conference on Foundations of Artificial Intelligence (eds.)
    M. de Glas, D. Gabbay, Paris, July 1–5 1991, 447–460.Google Scholar
  41. [SS93]
    Skowron A., Stepaniuk J.: Intelligent Systems Based on Rough Set Approach, Foundations of Computing and Decision Sciences, vol. 18 (3–4), 1993, 343–360.MathSciNetGoogle Scholar
  42. [St94]
    Stepaniuk J.: Decision Rules for Decision Tables, Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 42, No. 3, 1994, 457–469.MATHGoogle Scholar
  43. [Sti92]
    Stirling C.: Modal and temporal logics, In: Handbook of Logic in Computer Science vol. 2, (eds.) S. Abramsky, D.M. Dabbay and T.S. Maibaum, Clarendon Press, Oxford 1992, 478–563.Google Scholar
  44. [TS93]
    Trung N.T., Son N.H.: An Approach to the Handwriting Digit Recognition Problem Based on Modal Logic, ICS Research Report 44/93, Warsaw University of Technology, 1–58.Google Scholar
  45. [ZS93]
    Ziarko W., Shan N.: An incremental learning algorithm for constructing decision rules, Proc. of the International Workshop on Rough Sets and Knowledge Discovery, Banff 1993, 335–346.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jan G. Bazan
    • 1
  • Hung Son Nguyen
    • 2
  • Tuan Trung Nguyen
    • 3
  • Andrzej Skowron
    • 2
  • Jaroslaw Stepaniuk
    • 4
  1. 1.Institute of MathematicsPedagogical UniversityRzeszówPoland
  2. 2.Institute of MathematicsUniversity of WarsawWarsawPoland
  3. 3.Institute of Computer ScienceUniversity of WarsawWarsawPoland
  4. 4.Institute of Computer ScienceTechnical University of BiałystokBiałystokPoland

Personalised recommendations