Rough Mereology and Analytical Morphology

  • Andrzej Skowron
  • Lech Polkowski
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 13)


We present two theories that emerge in connection with rough set-based methods for classifying dynamic populations of objects. The first theory, referred to as rough mereology aims at the analysis of complex objects in terms of properties of their parts. The second theory — analytical morphology of rough sets is a generalization of mathematical morphology obtained by imposing a geometrical structure on the attributes in information systems.


Decision Table Mathematical Morphology Morphological Operation Complete Boolean Algebra Null Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B192a]
    Bleau A., deGuise J., LeBlanc R.: A new set of fast algorithms for mathematical morphology I; Idempotent geodesic transfornms, Computer Vision Graphics and Image Processing: Image Understanding 56 (2) (1992), 178 - 209MATHGoogle Scholar
  2. [B192b]
    Bleau A., deGuise J., LeBlanc R.:A new set of fast algorithms for mathematical morphology II; Identification of topographic features on grayscale images, Computer Vision Graphics and Image Processing: Image Understanding 56 (2) (1992), 210 - 229MATHGoogle Scholar
  3. [BSS94a]
    Bazan J., Skowron A., Synak P.:Dynamic reducts as a tool for extracting laws from decision tables,Proc. of the Symp. on Methodologies for Intelligent Systems}, Charlotte, NC, October 16-19, 1994, Lecture Notes in Artificial Intelligence Vol. 869, Springer-Verlag 1994, 346 - 355.Google Scholar
  4. [BSS94b]
    Bazan J., Skowron A., Synak P.: Market data analysis: A rough set approach, ICS Research Report 6/94 Warsaw University of Technology 1994Google Scholar
  5. [BSTSS94b]
    Bazan J., Son H.N., Trung T.N., Skowron A., Synak P.: Some logic and rough set applications for classifying objects, ICS Research Report 38/94, Warsaw University of Technology 1994.Google Scholar
  6. [Ch48]
    Choquet G.: Convergences, Ann. Univ. Grenoble, 23 (1948), 55 - 112MathSciNetGoogle Scholar
  7. [C181]
    Clarke B.L.: A calculus of individuals based on “Connection”, Notre Dame Journal of Formal Logic, 22 (1981), 204 - 218MathSciNetMATHCrossRefGoogle Scholar
  8. [C185]
    Clarke B.L.: Individuals and points, Notre Dame Journal of Formal Logic, 26 (1985), 61 - 75MathSciNetMATHCrossRefGoogle Scholar
  9. [GD88]
    Giardina C.R., Dougherty E.R.: Morphological Methods in Image and Signal Processing, Prentice Hall, Englewood Cliffs, 1988Google Scholar
  10. [Ha87]
    Haralick R.M., Sternberg S., Zhuong X.: Image analysis using mathematical morphology, IEEE Trans. Pattern Anal. Mach. Intelligence PAMI-9(1987), 532-550Google Scholar
  11. [Hau 14]
    Hausdorff F.: Grundzuge der Mengenlehre, Leipzig (Wien), 1914Google Scholar
  12. [HR90]
    Heijmans H.J.A.M., Ronse C.: The algebraic basis of mathematical morphology I. Dilations and erosions, Computer Vision Graphics and Image Processing 50 (1990), 245 - 295MATHCrossRefGoogle Scholar
  13. [Ke73]
    Kendall D.G.: Foundations of the theory of random sets, in: Stochastic Geometry (E.F. Harding and D.G. Kendall, eds. ), Wiley, 1973, pp. 322 - 376Google Scholar
  14. [KM90]
    Kodratoff Y., Michalski R.: Machine learning: An Artificial Intelligence approach, Vol. 3. San Mateo: Morgan Kaufmann 1990Google Scholar
  15. [Leif]
    Lesniewski, S.: Foundations of the general theory of sets (in Polish), Moscow, 1916; engl. trans!. in:Surma, Srzednicki, Barnett, Rickey (eds.), Stanislaw Lesniewski, Collected Works, Kluwer, Dordrecht 1992, 128 - 173Google Scholar
  16. [Le27]
    Lesniewski S.: On the foundations of Mathematics. Ch.I-III (in Polish), Przeglad Filozoficzny, 30 (1927), 164-206; Eng. transl. in [SSBR; 175-226]Google Scholar
  17. [Le28]
    Lesniewski S.: On the foundations of Mathematics. Ch.IV (in Polish), Przeglad Filozoficzny 31 (1928), 261-291; Eng. trans} in [SSBR; 227-263]Google Scholar
  18. [Le29]
    Lesniewski S.: On the foundations of Mathematics. Ch.V (in Polish), Przeglad Filozoficzny,32(1929), 60-101; Eng. transl. in [SSBR; 264-314]Google Scholar
  19. [Le30]
    Lesniewski S.: On the foundations of Mathematics. Ch. VI-Ch.IX (in Polish), Przeglad Filozoficzny, 33 (1930), 77-105; Eng. transl. in [SSBR; 315-349]Google Scholar
  20. [Le31]
    Lesniewski S.: On the foundations of Mathematics. Ch.X, Ch.XI (in Polish), Przeglad Filozoficzny 34 (1931), 142-170; Eng. transl. in [SSBR; 350-382]Google Scholar
  21. [Ma61]
    Marcus S.: Structures linguistiques et structures topologiques, Rev. Math. Pures Appl. 6 (30), (1961), 501 - 506MathSciNetMATHGoogle Scholar
  22. [MA75]
    Mamdani E.H., Assilian S.: An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 7, 1975, 1 - 13MATHCrossRefGoogle Scholar
  23. [Ma75]
    Matheron G.: Random Sets and Integral Geometry, Wiley, 1975Google Scholar
  24. [Ma83]
    Marcus S.: Modeles mathematiques pour la categorie grammaticale du cas, Rev. Math. Pures Appl. 8 (4) (1963), 585 - 610MATHGoogle Scholar
  25. [Mi51]
    Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152 - 183MathSciNetMATHCrossRefGoogle Scholar
  26. [MP84] Marek W., Pawlak Z.: Information systems and rough sets, Fund. Inform. VIII (1984), 105-115 [MR86]
    Marek W., Rasiowa H.: Approximating sets with equivalence relations, Theoretical Computer Sc. 48 (1986), 145 - 152MathSciNetMATHCrossRefGoogle Scholar
  27. [P82]
    Pawlak, Z.: Rough sets, International Journal of Information and Computer Science 11 (1982), 344 - 356MathSciNetGoogle Scholar
  28. [P91]
    Pawlak Z.: Rough sets: Theoretical aspects of reasoning about data. Dordrecht: Kluwer 1991MATHGoogle Scholar
  29. [P94]
    Pawlak Z.: Vagueness and Uncertainty a Rough Set Perspective, ICS ICS Research Report 19/94, Warsaw University of Technology 1994Google Scholar
  30. [Po94]
    Polkowski L.T.: Mathematical morphology of rough sets, Bull. Acad. Polon. Sci., Ser. Sci. Math. 41 (3) (1993), 241 - 273MathSciNetMATHGoogle Scholar
  31. [Pom05]
    Pompeiu D.: Ann. de Toulouse (2), 7, (1905)Google Scholar
  32. [PoSk94a]
    Polkowski L., Skowron A.: Rough mereology, Proc. of the Symp. On Methodologies for Intelligent Systems, Charlotte, NC, October 16-19, 1994, Lecture Notes in Artificial Intelligence Vol. 869, Springer Verlag, Berlin 1994, 85-94.Google Scholar
  33. [PoSk94b]
    Polkowski L., Skowron A.: Decision Support Systems, Rough Set Approach, Warszawa, 1994.Google Scholar
  34. [PS93a]
    Pawlak Z., Skowron A: Rough membership functions: A tool for reasoning with uncertainty, Algebraic Methods in Logic and their Computer Science, Banach Center Publications Vol.28., Polish Academy of Sciences, Warszawa 1993, 135 - 150Google Scholar
  35. [PS93b]
    Pawlak Z., Skowron A: A rough set approach for decision rules generation. ICS Research Report 23/93, Warsaw University of Technology 1993, Proc. of the IJCAI’93 Workshop: The Management of Uncertainty in AI, France 1993Google Scholar
  36. [PS94]
    Pawlak Z., Skowron A: Rough membership functions, In: M.Fedrizzi, J. Kacprzyk and R.R. Yager (eds.): Advances in the Dempster-Shafer Theory of Evidence. New York: John Wiley and Sons 1994, 251 - 271Google Scholar
  37. [RH91]
    Ronse C., Heijmans H.J.A.M.: The algebraic basis of mathematical morphology II. Openings and closings, Computer Vision Graphics and Image Processing: Image Understanding 54 (1) (1991), 74 - 97MATHGoogle Scholar
  38. [Se82]
    Serra J.: Image Analysis and Mathematical Morphology, Academic Press, New York 1982MATHGoogle Scholar
  39. [Sk82]
    Skowron A.: On topology in information systems, Bull. Acad. Polon. Sci. Math., 36 (1988)Google Scholar
  40. [Sk91]
    Skowron A: The rough set theory as a basis for the evidence theory, ICS Research Report 2/91, Warsaw University of Technology 1991, 1 - 53Google Scholar
  41. [Sk93]
    Skowron A: Boolean reasoning for decision rules generation. Proceedings of the 7-th International Symposium ISMIS’93, Trondheim, Norway 1993, In: J.Komorowski and Z.Ras (eds.): Lecture Notes in Artificial Intelligence, Vol.689. Springer-Verlag 1993, 295 - 305Google Scholar
  42. [Sk93a]
    Skowron A: A synthesis of decision rules: Applications of discernibility matrices, Proc. of the Conf. Intelligent Information Systems, Augustow, June 7-11, 1993, 30 - 46Google Scholar
  43. [Sk93b]
    Skowron A: Extracting laws from decision tables - a rough set approach, Proc. of the International Workshop on Rough Sets and Knowledge Discovery RSKD’93, Banff, Canada 1993, 101 - 104Google Scholar
  44. Sk93c] Skowron, A: Management of uncertainty: A rough set approach, ICS Research Report 46/93, Warsaw University of Technology 1994, also in: Proc. Int. Workshop Incompleteness and ncertainty in Information Systems, Montreal, October 8-9, 1993, 36-61, Springer Verlag, in print.Google Scholar
  45. [SkPo94]
    Skowron,A., Polkowski,L.: Introducing rough mereological controllers: rough quality control, In: T.Y. Lin, and A.M. Wildberger (eds.), Soft Computing, Simulation Councils, Inc., San Diego 1995, 240 - 243Google Scholar
  46. [SP94]
    Skowron A., Polkowski L.: Analytical Morphology: Mathematical Morphology of Decision Tables, Fundaments Informaticae 27 (2-3) (1996), 255 - 272.MathSciNetMATHGoogle Scholar
  47. [SR92]
    Skowron, A. and Rauszer C.: The Discernibility Matrices and Functions in Information Systems. In: R. Slowinski (ed.): Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Kluwer 1992, 331 - 362Google Scholar
  48. [SoD90]
    Song J., Delp E. J.: The analysis of morphological filters with multiple structuring elements, Computer Vision Graphics and Image Processing 50 (1990), 308 - 328CrossRefGoogle Scholar
  49. [SLF91]
    Sriram D., Logcher R., Fukuda S.: Computer - Aided Cooperative Product Development, LNCS 492, Springer-Verlag, Berlin Heidelberg, 1991Google Scholar
  50. [SSBR]
    Sunna S.J., Srzednicki J.T., Barnett D.I., Rickey V.F. (eds.): Stanislaw Lesniewski, Collected Works, Kluwer - Polish Scientific Publishers, Dordrecht-Warsaw, 1992Google Scholar
  51. [St86]
    Sternberg R. S.: Grayscale morphology, Computer Vision Graphics and Image Processing 35 (3) (1986), 333 - 355MathSciNetCrossRefGoogle Scholar
  52. Ta29] Tarski A.: Les fondements de la geometrie des corps, Annales de la Societe Polonaise de Mathematique (Supplement), Krakow, 1929, 29-33; Eng. transi. in: [Wo; 24-29]Google Scholar
  53. Ta35] Tarski A: Zur Grundlegung der Booleschen Algebra.I, Fundamenta Mathematicae, 24 (1935), 177-198; Eng. transi. in [Wo; 320-341]Google Scholar
  54. [Ta37]
    Tarski A.: Appendix E in: Woodger, J.H., The Axiomatic Method in Biology, Cambridge University Press, Cambridge 1937Google Scholar
  55. [Ton64]
    Tondeur: Ein Beispiel zur Allgemeinen Topologie: die Topologie einer Aequivalenz-relation, Annales Academiae Scientiarum Fennicae, ser. A, I. Math., No.344, Helsinki, 1964Google Scholar
  56. [Via 1]
    Vietoris L.: Monat. Math. Ph., 31 (1921), 173 - 204MathSciNetMATHCrossRefGoogle Scholar
  57. [Wh19]
    Whitehead A.N.: An Enquiry Concerning the Principles of Natural Knowledge,Cambridge U.Press, Cambridge, 1919Google Scholar
  58. [Wi88]
    Wiweger A.: On topological rough sets, Bull. Acad. Polon. Sci. Math., 37 (1988), 89 - 93MathSciNetGoogle Scholar
  59. Wo56] Woodger J.H.,transl.:Logic, Semantics, Metamathematics. Papers from 1923 to 1938 by Alfred Tarski, Clarendon, Oxford, 1956Google Scholar
  60. [Z65]
    Zadeh L.A.: Fuzzy sets, Information and Control 8, (1965) 338 - 353MathSciNetMATHGoogle Scholar
  61. [Zí93]
    Ziarko W.: Variable precision rough set model, Journal of Computer and System Sciences, 46 (1993), 39 - 59MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Andrzej Skowron
    • 1
  • Lech Polkowski
    • 2
  1. 1.Institute of MathematicsWarsaw UniversityWarszawaPoland
  2. 2.Institute of MathematicsWarsaw University of TechnologyWarszawaPoland

Personalised recommendations