Logical Analysis of Indiscernibility

  • Stéphane Demri
  • Ewa Orlowska
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 13)


In this paper we explain the role of indiscernibility in the analysis of vagueness of concepts and in concept learning. We develop deduction methods that enable us making inferences from incomplete information in the presence of indiscernibility.


Equivalence Class Equivalence Relation Binary Relation Transitive Closure Modus Ponens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AT1]
    Archangelsky, D. A. and Taitslin, M. A. (1989). A logic for data description. In A. R. Meyer and M.A. Taitslin, editors, Symposium on Logic Foundations of Computer Science, Pereslavl-Zalessky, pages 2–11. Springer-Verlag, LNCS 363, July 1989Google Scholar
  2. [Bu 1]
    Bunge, M. (1967) Scientific research I. The search for system. SpringerMATHGoogle Scholar
  3. [Col]
    Codd, E.F. (1970) A relational model for large shared data banks. Communications of ACM 13, 377–387MATHCrossRefGoogle Scholar
  4. [Chl]
    Chellas, B. (1980) Modal Logic. An Introduction. Cambridge University Press, CambridgeGoogle Scholar
  5. [Del]
    Demri, S. (1996a) The validity problem for the logic DALLA is decidable. Bulletin of the Polish Academy of Sciences, Math. Section, 44 (1): 79–86, 1996MathSciNetMATHGoogle Scholar
  6. [De2]
    Demri, S. (1996b) A class of information logics with a decidable validity problem. In W. Penczek and A. Szalas, editors, Symposium on Mathematical Foundations of Computer Sciences (MFCS’96), pages 291–302, LNCS 1113, Springer-Verlag, 1996Google Scholar
  7. [FO1]
    Farinas del Cerro, L., Orlowska, E. (1985) DAL — a logic for data analysis. Theoretical Computer Science 36, 251–264. Corrigendum: Theoretical Computer Science 47 (1986) 345Google Scholar
  8. [Gal]
    Gargov, G. (1986) Two completeness theorems in the logic for data analysis. ICS PAS Reports 581Google Scholar
  9. [Grl]
    Grzymala-Busse, J. (1988) Knowledge acquisition under uncertainty: a rough set approach. Journal of Intelligent and Robotic Systems 1, 3–16MathSciNetCrossRefGoogle Scholar
  10. [HMS1]
    Hunt, E.B., Marin, J., Stone, P.J. (1966) Experiments in Induction. Academic Press, New York-LondonGoogle Scholar
  11. [HC1]
    Hughes, G., Cresswell, M. (1984) A Companion to Modal Logic. Methuen, London and New-YorkMATHGoogle Scholar
  12. [Ko1]
    Konikowska, B. (1987) A formal language for reasoning about indiscemibility. Bulletin of the PAS 35, Ser. Math., 239–249Google Scholar
  13. [KOP1]
    Konrad, E., Orlowska, E. and Pawlak, Z. (1982) On approximate concept learning. Proceedings of the European Conference on AI, Orsay, FranceGoogle Scholar
  14. [Orl] Orlowska, E. (1983) Semantics of vague concepts. In: Dorn, G.,Weingartner, P.(eds)
    Foundations of Logic and Linguistics. Problems and Solutions. Selected contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science, Salzburg 1983. Plenum Press, 465–482Google Scholar
  15. [Or2]
    Orlowska, E. (1984) Logic of indiscemibility relations. Proceedings of the Conference on Computation Theory, Zaborow, Poland Lecture Notes in Computer Science 208, SpringerVerlag, 177–186Google Scholar
  16. [0r3]
    Orlowska, E. (1988a) Representation of vague information. Information Systems 13, 167–174MATHCrossRefGoogle Scholar
  17. [OR4]
    Orlowska, E. (1988b) Logical aspects of learning concepts. International Journal of Approximate Reasoning 2, 349–364MATHCrossRefGoogle Scholar
  18. [Pal]
    Pawlak, Z. (1981) Information systems theoretical foundations. Information Systems 6, 205–218MATHCrossRefGoogle Scholar
  19. [Pa2]
    Pawlak, Z. (1982) Rough sets. International Journal of Computer and Information Sciences 11, 341–356MathSciNetMATHCrossRefGoogle Scholar
  20. [Pa3]
    Pawlak, Z. (1985) Rough concept analysis. Bulletin of the PAS 33, Ser. Math., 495–498Google Scholar
  21. [Pa4]
    Pawlak, Z. (1986) On learning—a rough set approach. Proceedings of the Conference on Computation Theory, Zaborow, Poland. Lecture Notes in Computer Science 208, Springer-Verlag, 197–227Google Scholar
  22. [Pa5]
    Pawlak, Z. (1987) Learning from examples—the case of an imperfect teacher. Bulletin of the PAS 35, Ser.Tech., 259–264Google Scholar
  23. [Pa6]
    Pawlak, Z. (1991). Rough Sets. Kluwer, DordrechtMATHCrossRefGoogle Scholar
  24. [RZ1]
    Ras, Z. and Zemankova, M. (1984) Rough set based learning systems. Proceedings of the Conference on Computation Theory, Zaborow, Poland. Lecture Notes in Computer Science 208, Springer-Verlag, 265–276Google Scholar
  25. [Wil]
    Wille, R. (1982) Restructuring lattice theory: An approach based on hierachies of concepts. In: I. Rival (ed) Oredered Sets. Reidel, Dordrecht, 445–470CrossRefGoogle Scholar
  26. [Wi2]
    Wille, R. (1984) Liniendiagramme hierarhischer Begrieffssysteme. Preprint 812, Technische Hochschule DarmstadtGoogle Scholar
  27. [WLZ1]
    Wong, S.K.M., Ye Li and Ziarko, W. (1986) Comparision of rough set and statistical methods in inductive learning. International Journal of Man—Machine Studies 24, 53–72MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Stéphane Demri
    • 1
  • Ewa Orlowska
    • 2
  1. 1.Laboratoire LEIBNIZC.N.R.S.GrenobleFrance
  2. 2.Institute of TelecommunicationsWarsawPoland

Personalised recommendations