Transient Performance, Robustness and Off-Equilibrium Linearisation in Fuzzy Gain Scheduled Control

  • Tor A. Johansen
  • Kenneth J. Hunt
  • Peter J. Gawthrop
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 16)


The ability to perform well during transient operation will be an unavoidable requirement in future control systems where one pursues higher control performance and operational flexibility closer to the fundamental limitations of the physical system.


Transient Performance Local Controller Dynamic Output Feedback Transient Operation Schedule Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Apkarian and P. Gahinet. A convex characterization of gain scheduled H controllers. IEEE Trans, Automatic Control, 40:853–864, 1995.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    S. G. Cao, N. W. Rees, and G. Feng. Stability analysis and design for a class of continuous-time fuzzy control systems. Int. J. Control, 64:1069–1087, 1996.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    D. Driankov, R. Palm, and U. Rehfuss. A Takagi-Sugeno fuzzy gain-scheduler. In Proc. IEEE Conf. Fuzzy Systems, New Orleans, pages 1053–1059, 1996.CrossRefGoogle Scholar
  4. [4]
    P. J. Gawthrop. Continuous-time local state local model networks. In Proc. IEEE Conf. Systems, Man and Cybernetics, Vancouver, Canada, pages 852–857, 1995.Google Scholar
  5. [5]
    P. J. Gawthrop. Continuous-time local model networks. In R. W. Zbikowski and K. Hunt, editors, Neural Adaptive Control Technology, pages 41–70. World Scientific, Singapore, 1996.CrossRefGoogle Scholar
  6. [6]
    K. J. Hunt and T. A. Johansen. Design and analysis of gain-scheduled local controller networks. Int. J. Control, 66:619–651, 1997.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    T A. Johansen. On the optimality of the Takagi-Sugeno-Kang fuzzy inference mechanism. In Proceedings of the 4th IEEE Conf. on Fuzzy Systems, Yokohama, Japan, 1995.Google Scholar
  8. [8]
    T. A. Johansen and B. A. Foss. Constructing NARMAX models using ARMAX models. Int. J. Control, 58:1125–1153, 1993.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    T. A. Johansen, K. J. Hunt, P. J. Gawthrop, and H. Fritz. Off-equilibrium linearization and design of gain scheduled control with application to vehicle speed control. Preprint, submitted for publication, 1997.Google Scholar
  10. [10]
    I. Kaminer, A. M. Rascoal, P. P. Khargonekar, and E. E. Coleman. A velocity algorithm for the implementation of gain-scheduled controllers. Automatica, 31:1185–1191, 1995.MATHCrossRefGoogle Scholar
  11. [11]
    H. K. Khalil. Nonlinear Systems. Macmillan, New York, 1992.MATHGoogle Scholar
  12. [12]
    D. A. Lawrence and W. J. Rugh. Gain scheduling dynamic linear controllers for a nonlinear plant. Automatica, 31:381–390, 1995.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    D. J. Leith and W. E. Leithead. Appropriate realization of gain-scheduled controllers with application to wind turbine regulation. Int. J. Control, 65:223–248, 1996.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    R. Palm, D. Driankov, and U. Rehfuess. Lyapunov linearization based design of Takagi-Sugeno fuzzy controllers. In Proc. IFSA World Congress, São Paolo, pages 513–516, 1995.Google Scholar
  15. [15]
    W. J. Rugh. Analytical framework for gain scheduling. IEEE Control Systems Magazine, 11(1):79–84, 1991.CrossRefGoogle Scholar
  16. [16]
    J. S. Shamma and M. Athans. Analysis of gain scheduled control for nonlinear plants. IEEE Trans. Automatic Control, 35:898–907, 1990.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J. S. Shamma and M. Athans. Gain scheduling: Potential hazards and possible remedies. IEEE Control Systems Magazine, 12(3): 101–107, 1992.CrossRefGoogle Scholar
  18. [18]
    T. Takagi and M. Sugeno. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man, and Cybernetics, 15:116–132, 1985.MATHCrossRefGoogle Scholar
  19. [19]
    K. Tanaka and M. Sano. A robust stabilizing problem of fuzzy controller systems and its application to backing up control of a truck-trailer. IEEE Trans. Fuzzy Systems, 2:119–134, 1994.CrossRefGoogle Scholar
  20. [20]
    K. Tanaka and M. Sugeno. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, 45:135–156, 1992.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    H. O. Wang, K. Tanaka, and M. F. Griffin. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Systems, 4:14–23, 1996.CrossRefGoogle Scholar
  22. [22]
    J. Zhao, R. Gorez, and V. Wertz. Fuzzy control based on linear models. In R. Murray-Smith and T. A. Johansen, editors, Multiple Model Approaches to Modelling and Control. Taylor and Francis Ltd., London, 1997.Google Scholar
  23. [23]
    J. Zhao, V. Wertz, and R. Gorez. Linear TS fuzzy model based robust stabilizing controller design. In IEEE Conf. Decision and Control, New Orleans, pages 255–260, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Tor A. Johansen
    • 1
  • Kenneth J. Hunt
    • 2
  • Peter J. Gawthrop
    • 3
  1. 1.SINTEF Electronics and Cybernetics Automatic ControlTrondheimNorway
  2. 2.Daimler-Benz R & DIntelligent Systems GroupBerlinGermany
  3. 3.Centre for Systems and ControlUniversity of GlasgowGlasgowScotland

Personalised recommendations