Advertisement

Discovery of Data Patterns with Applications to Decomposition and Classification Problems

  • Sinh Hoa Nguyen
  • Andrzej Skowron
  • Piotr Synak
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 19)

Abstract

Data mining community is searching for efficient methods of extracting patterns from data [20],[22],[39],[46],[45]. We study problems of extracting several kinds of patterns from data. The simplest ones are called templates. We consider also more sophisticated relational patterns extracted automatically from data.

Keywords

Decision Rule Decision Table Tolerance Relation Decision Class Maximal Fitness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Suami, A.: Mining assocation rules between sets of items in large datatabes. In: ACM SIGMOD. Conference on Management of Data, Washington DC (1993) 207 - 216Google Scholar
  2. 2.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of assocation rules. In: V.M. Fayad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (eds.), Advanced in Knowledge Discovery and Data Mining, AAAI/MIT Press (1996) 307 - 328Google Scholar
  3. 3.
    Bezdek, J.: A sampler of non-neural fuzzy models for clustering and classification. In: Tutorial at the Fourth European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, September 2 - 5 (1996)Google Scholar
  4. 4.
    Bezdek, J.C., Chuah, S., Leep, D.: Generalized k-nearest neighbour rule. In: Fuzzy Sets and Systems 18/3 (1986) 237-256Google Scholar
  5. 5.
    Bazan, J., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decision tables. In: Z. W. Ras, M. Zemankova (eds.), Proceedings of the Eighth Symposium on Methodologies for Intelligent Systems, Charlotte, NC, October 16-19, Lecture Notes in Artificial Intelligence 869, Springer-Verlag (1994) 346 - 355Google Scholar
  6. 6.
    Cattaneo, G.: Generalized rough sets. Preclusivity fuzzy-intuitionistic (BZ) lattices. Studia Logica 58 (1997) 47 - 77CrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L. (eds.): Introduction to algorithms. The MIT Press/McGraw Hill, Cambridge, MA (1990) 974 - 978Google Scholar
  8. 8.
    Davis, L.(ed.): Handbook of genetic algorithms. Van Nostrand Reinhold, New York (1991)Google Scholar
  9. 9.
    Goldberg, D.E.: GA in search, optimisation, and machine learning. Addison-Wesley, New York (1989)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and interactability. A guide to the theory of NP-completeness. W.H. Freeman and Company, New York (1979)Google Scholar
  11. 11.
    Grzymala-Busse, J.: A new version of the rule induction system LERS. In: Fundamenta Informatice 31/1 (1997) 27-39Google Scholar
  12. 12.
    Holland, J.H.: Adaptation in natural and artificial systems. The MIT Press, Cambridge, MA (1992)Google Scholar
  13. 13.
    Hu, X., Cercone, N.: Rough set similarity based learning from databases. In: Proc. of The First International Conference of Knowledge Discovery and Data mining, Montreal, Canada, August 20-21 (1995) 162-167Google Scholar
  14. 14.
    Koza, J.R.: Genetic programming: On the programming of computers by means of the natural selection, The MIT Press, Cambridge, MA (1992)Google Scholar
  15. 15.
    Krgtowski, M., Stepaniuk, J., Polkowski, L., Skowron, A.: Data reduction based on rough set theory. In: Y. Kodratoff, G. Nakhaeizadeh, and Ch. Taylor (eds.), Proceedings of the Workshop on Statistics, Machine Learning and Knowledge Discovery in Data Bases, April 25-27, Crete, Greece (1995) 210-215; see also: ICS Research Report 13/95, Warsaw University of Technology (1995)Google Scholar
  16. 16.
    Krgtowski, M., Stepaniuk, J.: Selection of objects and attributes a tolerance rough set approach. In: Proceedings of Poster Session of the Ninth International Symposium on Methodologies for Intelligent Systems (ISMIS’96), Zakopane, Poland, June 9-13, Oak Ridge Laboratory (1996) 169-180Google Scholar
  17. 17.
    Krawiec, K., Slowinski, R., Vanderpooten, D.: Construction of rough classifiers based on application of a similarity relation. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6-8 (1996) 23 - 30Google Scholar
  18. 18.
    Lin, T.Y.: Neighborhood system and approximation in database and knowled base systems. In: Proc. of The Fourth International Symposium on Methodologies of Intelligent System (1989)Google Scholar
  19. 19.
    Marcus, S.: Tolerance rough sets, Cech topologies, learning processes. Bulletin of the Polish Academy of Sciences, Technical Sciences 42 /3 (1994) 471 - 487Google Scholar
  20. 20.
    Mannila, H., Toivonen, H., Verkamo, A. I.: Efficient algorithms for discovering association rules. In: U. Fayyad and R. Uthurusamy (eds.): AAAI - Workshop on Knowledge Discovery in Databases, Seattle, WA (1994) 181 - 192Google Scholar
  21. 21.
    Michalski, R., Mozetic, I., Hong, J., Lavrac, N.: The multi-purpose increamental learning system AQ15 and its testing application to three medical domains. In: Proc. of the Fifth National Conference on AI, (1986) 1041 - 1045Google Scholar
  22. 22.
    Mollestad, T., Skowron, A.: A rough set framework for data mining of propositional default rules. In: Z.W. Ras, M. Michalewicz (eds.), Ninth International Symposium on Methodologies for Intelligent Systems (ISMIS-96), Zakopane, Poland, June 9-13, Lecture Notes in Artificial Intelligence 1079, Springer-Verlag, Berlin (1996) 448 - 457Google Scholar
  23. 23.
    Murthy, S., Aha, D.: UCI repository of machine learning data tables. http://www/ics.uci.edu/ mlearn.Google Scholar
  24. 24.
    Nguyen, S. Hoa., Nguyen, T.Trung., Skowron, A., Synak, P.: Knowledge discovery by rough set methods. In: Nagib C. Callaos (ed.), Proceedings of the International Conference on Information Systems Analysis and Synthesis (ISAS’96), July 22-26, Orlando, USA (1996) 26 - 33Google Scholar
  25. 25.
    Nguyen, S. Hoa., Polkowski, L., Skowron, A., Synak, P., Wróblewski J.: Searching for approximate description of decision classes. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6-8 (1996) 153 - 161Google Scholar
  26. 26.
    Nguyen, S. Hoa, Skowron, A., Synak, P.: Rough sets in data mining: approximate description of decision classes. In: Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing (EUFIT’96), September 2-5, Aachen, Germany, Verlag Mainz, Aachen (1996) 149 - 153Google Scholar
  27. 27.
    Nguyen, H. Son, Skowron, A.: Quantization of real value attributes: rough set and boolean reasoning approach. In: P.P. Wang (ed.), Second Annual Joint Conference on Information Sciences (JCIS’95), Wrightsville Beach, North Carolina, 28 September - 1 October (1995) 34 - 37Google Scholar
  28. 28.
    Nguyen, S. Hoa, Skowron, A.: Searching for relational patterns in data. In: J. Komorowski, J. Zytkow, (eds.), The First European Symposium on Principle of Data Mining and Knowledge Discovery (PKDD’97), June 25-27, Trondheim, Norway, Lecture Notes in Artificial Intelligence 1263, Springer-Verlag, Berlin (1997) 265 - 276CrossRefGoogle Scholar
  29. 29.
    Nguyen, S. Hoa, Nguyen, H. Son: Some efficient algorithms for rough set methods. In: Proceedings of the Sixth International Conference, Information Procesing and Management of Uncertainty in Knowledge-Based Systems (IPMU’96), July 1-5, Granada, Spain (1996) 1451 - 1456Google Scholar
  30. 30.
    Pawlak, Z.: Rough classification. In: International Journal of Man-Machine Studies 20 (1984) 469-483Google Scholar
  31. 31.
    Pawlak, Z.: Rough sets. Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  32. 32.
    Polkowski, L., Skowron, A., Zytkow, J.: Tolerance based rough sets. In: T.Y. Lin, A.M. Wildberger (eds.): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, Simulation Councils, Inc., San Diego, CA (1995) 55 - 58Google Scholar
  33. 33.
    Polkowski, L., Skowron, A.: Rough mereological approach to knowledge-based distributed AI. In: J.K. Lee, J. Liebowitz, Y.M. Chae (eds.): Critical Technology. Proc. of The Third World Congress on Expert Systems, Seoul, Cognisant Communication Corporation, New York (1996) 774 - 781Google Scholar
  34. 34.
    Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning, Journal of Approximate Reasoning (1996) 2/4 333-365Google Scholar
  35. 35.
    Quinlan, J R • C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, CA (1993)Google Scholar
  36. 36.
    Stepaniuk, J.: Similarity based rough sets and learning. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6-8 (1996) 18 - 22Google Scholar
  37. 37.
    Skowron, A., Polkowski, L., Komorowski, J.: Learning tolerance relation by boolean descriptions: Automatic feature extraction from data tabes. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6-8 (1996) 11 - 17Google Scholar
  38. 38.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. In: Fundamenta Informaticae 27/2,3 (1996) 245-253Google Scholar
  39. 39.
    Piatetsky-Shapiro, G.: Discovery, analysis and presentation of strong rules. In: G. Piatetsky-Shapiro and W.J. Frawley (eds.): Knowledge Discovery in Databases, AAAI/MIT (1991) 229 - 247Google Scholar
  40. 40.
    Skowron, A.; Synthesis of adaptive decision systems from experimental data. In: Aamodt., A, Komorowski., J. (eds.): Proceedings of the Fifth Scandinavian Conference on Artificial Intelligence (SCAI’95), May 29-31, 1995, Trondheim, Norway, IOS Press, Amsterdam (1995) 220 - 238Google Scholar
  41. 41.
    Skowron, A., Polkowski, L.: Rough mereological foundations for analysis, synthesis, design and control in distributive system. In: P.P. Wang (ed.), Second Annual Joint Conference on Information Sciences (JCIS’95), Wrightsville Beach, North Carolina, 28 September - 1 October (1995) 346 - 349Google Scholar
  42. 42.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. in: R. Slowinski (ed.): Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht (1992) 331 - 362CrossRefGoogle Scholar
  43. 43.
    Smyth, P., Goodman, R.M.: Rule introduction using information theory. In: G. Piatetsky-Shapiro and W.J. Frawley (eds.): Knowledge Discovery in Databases, AAAI/MIT (1991) 159 - 176Google Scholar
  44. 44.
    Tentush, I.: On minimal absorbent sets for some types of tolerance relations. In: Bulletin of the Polish Academy of Sciences 43/1 (1995) 79-88Google Scholar
  45. 45.
    Toivonen, H., Klemettinen, M., Ronkainen, P., Hatonen, P., Mannila, H.: Pruning and grouping discovered association rules. In: Familiarisation Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases - MLNET, Heraklion, Crete, April (1995) 47 - 52Google Scholar
  46. 46.
    Uthurusamy, H., Fayyad, V.M., Spangler, S.: Learning useful rules from inconclusive data. In: G. Piatetsky-Shapiro and W.J. Frawley (eds.): Knowledge Discovery in Databases, AAAI/MIT (1991) 141 - 157Google Scholar
  47. 47.
    Yao, Y.Y., Wong, S.K.M., Lin, T.Y.: A review of rough set models. In: T.Y. Lin, N. Cercone (eds.): Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers, Boston, Dordrecht (1997) 47 - 75Google Scholar
  48. 48.
    Windham, M.P.: Geometric fuzzy clustering algorithms. Fuzzy Sets and Systems 3 (1983) 271 - 280CrossRefGoogle Scholar
  49. 49.
    Wróblewski, J.: Finding minimal reducts using genetic algorithms. In: P.P. Wang (ed.), Second Annual Joint Conference on Information Sciences (JCIS’95), Wrightsville Beach, North Carolina, 28 September — 1 October (1995) 186 - 189Google Scholar
  50. 50.
    Wróblewski, J.: Theoretical foundations of order—based genetic algorithms. In: Fundamenta Informaticae 28/3-4 Kluwer Academic Publishers, Dordrecht (1996) 423-430Google Scholar
  51. 51.
    Wróblewski, J.: Genetic algorithm in decomposition and classification problems. (in this book)Google Scholar
  52. 52.
    Ziarko, W.: Rough sets, fuzzy sets and knowledge discovery. In: Workshops in Computing, Springer—Verlag & British Computer Society, Berlin, London (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Sinh Hoa Nguyen
    • 1
  • Andrzej Skowron
    • 2
  • Piotr Synak
    • 3
  1. 1.Institute of Computer ScienceWarsaw UniversityWarsawPoland
  2. 2.Institute of MathematicsWarsaw UniversityWarsawPoland
  3. 3.Polish-Japanese Institute of Computer TechniquesWarsawPoland

Personalised recommendations