Genetic Algorithms in Decomposition and Classification Problems

  • Jakub Wróblewski
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 19)


Some combinatorical problems concerned with using rough set theory in knowledge discovery (KD) and data analysis can be successfully solved using genetic algorithms (GA) — a sophisticated, adaptive search method based on the Darwinian principle of natural selection (see [4], [6]). These problems are frequently NP-hard, as in case of reducts or templates finding (see [12]), and there is no fast and reliable way to solve them in deterministic way.


Genetic Algorithm Heuristic Algorithm Hybrid Algorithm Control Sequence Decision Class 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazan, J., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decision tables. In: Z. W. Ras, M. Zemankova (eds.), Proceedings of the Eighth Symposium on Methodologies for Intelligent Systems, Charlotte, NC, October 16–19, Lecture Notes in Artificial Intelligence 869, Springer-Verlag (1994) 346–355Google Scholar
  2. 2.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. The MIT Press, Cambridge (1992) 974–978Google Scholar
  3. 3.
    Davis, L. (ed.): Handbook of genetic algorithms. New York, Van Nostrand Reinhold (1991)Google Scholar
  4. 4.
    Goldberg, D.E.: GA in search, optimisation, and machine learning. Addison-Wesley (1989)Google Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Company, New York (1979)Google Scholar
  6. 6.
    Holland, J.H.: Adaptation in natural and artificial systems. The MIT Press, Cambridge (1992)Google Scholar
  7. 7.
    Komorowski, J., Ohrn A.: ROSETTA–a rough set toolkit for analysis of data. In: P.P. Wang (ed.): Proceedings of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC’97) at Third Annual Joint Conference on Information Sciences (JCIS’97), Duke University, Durham, NC, USA, Rough Set Computer Science 3, March 1–5 (1997) 403–407Google Scholar
  8. 8.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. Springer-Verlag (1994)Google Scholar
  9. 9.
    Nguyen, H. Son, Nguyen, T. Trung, Skowron, A., Synak, P.: Knowledge discovery by rough set methods. In: Proceedings of The International Conference On Information Systems Analysis and Synthesis, July 22–26, 1996, Orlando, USA (1996) 26–33Google Scholar
  10. 10.
    Nguyen, S. Hoa, Polkowski, L., Skowron, A., Synak, P., Wróblewski, J.: Searching for approximate description of decision classes. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6–8 (1996) 153–161Google Scholar
  11. 11.
    Nguyen, H. Son, Skowron, A., Synak, P.: Rough sets in data mining: approximate description of decision classes. In: Proceedings of The fourth European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, September 2–5 (1996) 149–153Google Scholar
  12. 12.
    Nguyen, S. Hoa, Skowron, A., Synak, P.: Discovery of data patterns with applications to decomposition and classification problem. (in this book)Google Scholar
  13. 13.
    Nguyen, S. Hoa, Nguyen, H. Son: Some efficient algorithms for rough set methods. In: Proceedings of the Sixth International Conference, Information Procesing and Management of Uncertainty in Knowledge- Based Systems (IPMU’96), July 1–5, Granada, Spain (1996) 1451–1456Google Scholar
  14. 14.
    Nguyen, S. Hoa, Skowron, A., Synak, P., Wróblewski, J.: Knowledge discovery in databases: rough set approach. In: Proceedings of The Seventh International Fuzzy Systems Association World Congress 2 IFSA’97, Prague, Czech Republic (1997) 204–209Google Scholar
  15. 15.
    Nix, A., Vose, M.D.: Modelling genetic algorithms with Markov chains Annals of Mathematics and Artificial Intelligence (1991)Google Scholar
  16. 16.
    Pawlak, Z.: Rough sets. Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  17. 17.
    Radcliffe, N.J.: Forma analysis and random respectful recombination. In: Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers (1991) 222–229Google Scholar
  18. 18.
    Skowron, A., Polkowski, L.: Rough mereological foundations for analysis, synthesis, design and control in distributive system. In: Proceedings of the Second Annual Joint Conference on Information Sciences, Sept. 28–Oct. 1, 1995, Wrightsville Beach, NC (1995) 346–349Google Scholar
  19. 19.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: R. Slowinski (ed.), Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory. Kluwer, Dordrecht (1992) 331–362CrossRefGoogle Scholar
  20. 20.
    Suzuki, J.: A Markov chain analysis on a genetic algorithm. In: Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers (1993) 146–153Google Scholar
  21. 21.
    Wróblewski, J.: Finding minimal reducts using genetic algorithms. In: Proceedings of the Second Annual Join Conference on Information Sciences, September 28 — October 1, 1995, Wrightsville Beach, NC (1995) 186–189Google Scholar
  22. 22.
    Wróblewski, J.: Theoretical foundations of Order—Based Genetic Algorithms. In: Fundamenta Informaticae 28/3–4 (1996) 423–430Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jakub Wróblewski
    • 1
  1. 1.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations