Advertisement

Multistage Rough Set Analysis of Therapeutic Experience with Acute Pancreatitis

  • Krzysztof Słowiński
  • Jerzy Stefanowski
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 19)

Abstract

The rough set approach has been applied to analyse a multistage decision process concerning the treatment of acute pancreatitis with peritoneal lavage. The clinical experience has been represented by two kinds of information systems: system A, classifying patients described by pre-lavage attributes, and five systems B classifying patients described by attributes of the course of multistage lavage. From the medical point of view, the analysis of these information systems has aimed at identifying subsets of the most important attributes for results of the patient’s treatment and discovery of decision rules representing cause-and-effect dependencies between attributes. Achieving these aims have been facilitated by using two following rough set based strategies: adding to the core the attributes of the highest increase of discriminatory power and approach to inducing the satisfactory set of strong decision rules.

Keywords

Acute Pancreatitis Decision Rule Severe Acute Pancreatitis Peritoneal Lavage Decision Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chan C.C., Grzymala-Busse J.W.: On the two local inductive algorithms: PRISM and LEM2. Foundations of Computing and Decision Sciences 19 /4 (1994) 185–204Google Scholar
  2. 2.
    Fibak, J., Pawlak, Z., Slowinski, K., Slowinski, R.: Rough sets based decision algorithm for treatment of duodenal ulcer by HSV. Bull. Polish Acad. Sci. Ser. Sci. Biol. 34/10/12 (1986) 227–246Google Scholar
  3. 3.
    Gjessing J.: Peritoneal dialysis in severe acute hemorrhaigic pancreatitis. Acta Chirurgica Scandinavica 133 (1967) 645–647Google Scholar
  4. 4.
    Grzymala-Busse J.W.: LERS–a system for learning from examples based on rough sets. In: R. Slowinski (ed.): Intelligent Decision Support — Handbook of Ap-plications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht (1992) 3–18CrossRefGoogle Scholar
  5. 5.
    Hand, D.J.: Discrimination and classification. Wiley, New York (1981)Google Scholar
  6. 6.
    Krusinska E., Slowinski R., Stefanowski J.: Discriminant versus rough sets approach to vague data analysis. Applied Stochastic Models and Data Analysis 8 (1992) 43–56CrossRefGoogle Scholar
  7. 7.
    Krusinska E., Stefanowski J., Stromberg J.E.: Comparability of newer and classical data analysis techniques. Application in medical domain classification. In: Didey E. et al. (eds.), New approaches in classification and data analysis, Springer–Verlag (series Studies in Classification, Data Analysis and Knowledge Organization ) (1993) 644–652Google Scholar
  8. 8.
    McMahon M.J., Pickford J., Playforth M.J.: Early prediction of severity of acute pancreatitis using peritoneal lavage. Acta Chirurgica Scandinavica 146 (1980) 171–175Google Scholar
  9. 9.
    Michalski R.S.: A theory and methodology of inductive learning. In: R.S. Michalski, J.G. Carbonell and T.M. Mitchell (eds), Machine learning: an artificial intelligence approach, Morgan Kaufman, San Mateo (1983) 83–134Google Scholar
  10. 10.
    Mienko R., Stefanowski J., Toumi K., Vanderpooten D.: Discovery-oriented induction of decision rules. Cahier du Lamsade 141 Paris, Universite de Paris Dauphine (septembre 1996 )Google Scholar
  11. 11.
    Mienko R., Slowinski R., Stefanowski J., Susmaga R.: RoughFamily–software implementation of rough set based data analysis and rule discovery techniques. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6–8 (1996) 437–440Google Scholar
  12. 12.
    Pawlak Z.: Rough sets. Int. J. Computer and Information Sciences 11 (1982) 341–356CrossRefGoogle Scholar
  13. 13.
    Pawlak Z.: Rough sets. Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  14. 14.
    Pawlak Z., Grzymala-Busse J., Slowinski R., Ziarko, W.: Rough sets. Communications of the ACM 38/11 (1995) 89–95Google Scholar
  15. 15.
    Pawlak Z., Slowinski K, Slowinski R.: Rough classification of patients after highly selected vagotomy for duodenal ulcer. International J. Man-Machine Studies 24 (1986) 413–433CrossRefGoogle Scholar
  16. 16.
    Piatetsky-Shapiro G.: Discovery, analysis and presentation of strong rules. In: Piatetsky-Shapiro G. and Christopher Matheus (eds.), Knowledge discovery in databases, AAAI/MIT Press (1991) 229–247Google Scholar
  17. 17.
    Ranson J.H., Rifkind K.M., Turner J.W.: Peritoneal signs and nonoperative peritoneal lavage in acute pancreatitis. Surgery, Gynecology and Obstetrics 143 (1976) 209–219Google Scholar
  18. 18.
    Ranson J.H., Spencer F.C.: The role of peritoneal lavage in severe acute pancreatitis. Annals of Surgery 187 (1978) 565–575CrossRefGoogle Scholar
  19. 19.
    Rosato E.F., Mullis W.F., Rosato F.E.: Peritoneal lavage therapy in hemorrhagic pancreatitis. Surgery 74 (1973) 106–111Google Scholar
  20. 20.
    Skowron A.: Boolean reasoning for decision rules generation. In Komorowski J., Ras Z. (eds.), Methodologies for Intelligent Systems. LNAI 689 Springer-Verlag, Berlin (1993) 295–305CrossRefGoogle Scholar
  21. 21.
    Slowinski, K.: Rough classification of HSV patients. In Slowinski R. (ed.), Intelligent decision support. Handbook of applications and advances of the rough sets theory, Kluwer Academic Publishers, Dordrecht (1992) 363–372CrossRefGoogle Scholar
  22. 22.
    Slowinski K., Slowinski R., Stefanowski J.: Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis. Medical Informatics 13 (1988) 143–159CrossRefGoogle Scholar
  23. 23.
    Slowinski, K., El. Sanossy Sharif: Rough sets approach to analysis of data of diagnostic peritoneal lavage applied for multiple injuries patients. In: W. Ziarko (ed.): Rough Sets, Fuzzy Sets and Knowledge Discovery (RSKD’93). Workshops in Computing, Springer-Verlag & British Computer Society, London, Berlin (1994) 420–425CrossRefGoogle Scholar
  24. 24.
    Slowinski, K., Stefanowski, J., Antczak, A., Kwias, Z.: Rough set approach to the verification of indications for treatment of urinary stones by extracorporeal shock wave lithotripsy (ESWL). In: T.Y. Lin, A.M. Wildberger (eds.): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, Simulation Councils, Inc., San Diego, CA (1995) 93–96Google Scholar
  25. 25.
    Slowinski, K., Stefanowski, J.: On limitations of using rough set approach to analyse non-trivial medical information systems. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6–8 (1996) 176–184Google Scholar
  26. 26.
    Slowinski R. (ed.), Intelligent decision support. Handbook of applications and advances of the rough sets theory, Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  27. 27.
    Slowinski, R., Stefanowski, J.: ‘RoughDAS’ and ‘RoughClass’ software implementations of the rough set approach. In: Slowinski R. (ed.), Intelligent decision support. Handbook of applications and advances of the rough sets theory, Kluwer Academic Publishers, Dordrecht (1992) 445–456CrossRefGoogle Scholar
  28. 28.
    Stefanowski J.: On rough set based approaches to induction of decision rules. (this book)Google Scholar
  29. 29.
    Stefanowski J., Slowinski K.: Rough sets s a tool for studying attribute dependencies in the urinary stones treatment data set. In: T.Y. Lin, N. Cercone (eds.), Rough sets and data mining, Kluwer Academic Publishers, Boston (1997) 177–198CrossRefGoogle Scholar
  30. 30.
    Stefanowski J., Slowinski K.: Rough set theory and rule induction techniques for discovery of attribute dependencies in medical information systems. In Komorowski J., Zytkow J. (eds.), Principles of Knowledge Discovery. Proceedings of the First European Symposium (PKDD ‘87), Trondheim, Norway, June 1997. Springer Lecture Notes in AI 1263 Springer–Verlag (1997) 36–46Google Scholar
  31. 31.
    Stefanowski J., Vanderpooten D.: A general two stage approach to rule induction from examples. In: W. Ziarko (ed.): Rough Sets, Fuzzy Sets and Knowledge Discovery (RSKD’93). Workshops in Computing, Springer-Verlag & British Computer Society, London, Berlin (1994) 317–325CrossRefGoogle Scholar
  32. 32.
    Wall A.J.: Peritoneal dialysis in treatment of severe acute pancreatitis. Medical Journal of Australia 52 (1965) 281–284Google Scholar
  33. 33.
    Ziarko W.: Review of basics of rough sets in the context of data mining In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura (eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6–8 (1996) 447–457Google Scholar
  34. 34.
    Ziarko, W., Shan, N.: KDD-R: A comprehensive system for knowledge discovery in databases using rough sets. In: T.Y. Lin, A.M. Wildberger (eds.): Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, Simulation Councils, Inc., San Diego, CA (1995) 298–301Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Krzysztof Słowiński
    • 1
  • Jerzy Stefanowski
    • 2
  1. 1.Clinic of TraumatologyK.Marcinkowski University of Medical Sciences in PoznańPoznańPoland
  2. 2.Institute of Computing SciencePoznań University of TechnologyPoznańPoland

Personalised recommendations