Rough Sets in Economic Applications

  • Adam Mrózek
  • Krzysztof Skabek
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 19)


Making economic decisions is indeed a very interesting and perspective domain for many applications of methods and tools of computer science. However, economic decision problems are difficult to formalize. First of all it results from their complex character and great number of parameters describing their evolution, inexplicitness and incompleteness of available information as well as shortage of explicit criteria explaining economic decisions. Thus in economic decisions we often use intuition and knowledge which is accumulated in the process of creative generalization of practical experiments and observation results or empirical analysis. The same should be obviously considered during development of computer systems which support the process of making economic decisions.


Decision Rule Stock Exchange Decision Table Economic Decision Decision Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BazSkSy94a]
    Bazan, J., Skowron, A., Synak, P.: Market data analysis: A rough set approach. In: ICS Research Report 6/94, Warsaw University of Technology (1994)Google Scholar
  2. [BazSkSy94b]
    Bazan, J., Skowron, A., Synak, P.: Discovery of decision rules from experimental data. In: T.Y. Lin (ed.): Proceedings of the Third International Workshop on Rough Sets and Soft Computing (RSSC’94), San Jose State University, San Jose, California, USA, November 10–12 (1994) 526–533Google Scholar
  3. [BazSkSy94c]
    Bazan, J., Skowron, A., Synak, P.: Dynamic reducts as a tool fos extracting laws from decision tables. In: Z. W. Ras, M. Zemankova (eds.), Proceedings of the Eighth Symposium on Methodologies for Intelligent Systems, Charlotte, NC, October 16–19, Lecture Notes in Artificial Intelligence 869, Springer-Verlag (1994) 346–355Google Scholar
  4. [Bed93]
    Bednarski, L., Borowiecki, R., Duraj, J., Kurtys, E., Wasniewski, T., Wersty, B.: Economic analysis in a company, Wydawnictwo Akademii Ekonomicznej we Wroclawiu, Wroclaw (1993) (in Polish)Google Scholar
  5. [BrilMai90]
    Brilman, J., Maire, C.: Manuel d’evaluation des entreprises. Les Editions d’Organisation, Paris (1990)Google Scholar
  6. [Buzala95]
    Buzala, S.: Rough sets in marketing decisions. The Master Thesis, Silesian Technical University, Gliwice (1995) (in Polish)Google Scholar
  7. [ChLee73]
    Chang, C.R., Lee, R.C.T.: Symbolic logic and mechanical theorem proving, Academic Press (1973)Google Scholar
  8. [C1Me184]
    Clocksin, W., Mellish, C.: Programming in Prolog, (2nd ed.) Berlin B.R.D., Springer-Verlag (1984)Google Scholar
  9. [Debski94]
    Debski, W.: Bank risk. Bank i Kredyt 10 (1994) (in Polish)Google Scholar
  10. [De194]
    Delenda, J.F.: Achat et vente d’entreprise. Belfond, Paris (1994)Google Scholar
  11. [FanDai93]
    Fan Dai: Centralized, application oriented graphical interaction control using an example of planning robotic tasks. Computer & Graphics 17/2 (1993) 155–163Google Scholar
  12. [GRW94]
    Garbarski, L., Rutkowski, I., Wrzosek, W.: Marketing. Panstwowe Wydawnictwo Ekonomiczne, Warszawa (1994) (in Polish)Google Scholar
  13. [GrzBus92]
    Grzymala-Busse, J.: LERS–A system for learning from examples based on rough sets. In: R. Slowinski (ed.): Intelligent Decision Support–Handbook of Applications and Advances of Rough Sets Theory, Kluwer Academic Publishers, Dordrecht (1992) 3–18CrossRefGoogle Scholar
  14. [GuiLen94]
    Guillon, P.M., Lengaigne, J.J.: Mémento les professions. Patrimoine Management & Technologies, Bulogne (1994)Google Scholar
  15. [LenPia94]
    Lenarcik, A., Piasta, Z.: Rough classifiers. In: W. Ziarko (ed.): Rough Sets, Fuzzy Sets and Knowledge Discovery (RSKD’93). Workshops in Computing, Springer-Verlag & British Computer Society, London, Berlin (1994) 298–316CrossRefGoogle Scholar
  16. [KSow93]
    Kamela-Sowinska, A.: The object of pricing in privatization. Rachunkowoc 3 (1993) (in Polish)Google Scholar
  17. [Kotler89]
    Kotler., Ph.: Marketing management. Prentice Hall, New York (1989)Google Scholar
  18. [Kraw95]
    Krawczyk, R.: Computer system supporting companies valuation. The Master Thesis, Silesian Technical University, Gliwice (1995) (in Polish)Google Scholar
  19. LE95] Les Echos: Le Quotidien de l’Economie 16875 (1995)Google Scholar
  20. [Meffert86]
    Meffert, H.: Marketing. Gabler, Wiesbaden (1986)Google Scholar
  21. [Merritt89]
    Merritt, D.: Building experts systems in Prolog. Springer-Verlag, New York (1989)CrossRefGoogle Scholar
  22. [NoGlo94]
    Nogalski, B., Glowacki, K.: The value and price of a company - interpretation dilemmas. Przeglad organizacji 5 (1994) (in Polish)Google Scholar
  23. [Pawlak82]
    Pawlak, Z.: Rough sets. International Journal of Information and Computer Science 11 (1982) 341–356CrossRefGoogle Scholar
  24. [Pawlak9l]
    Pawlak, Z.: Rough sets. Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  25. Piasta] Piasta, Z.: Data mining and knowledge discovery in marketing and financial databases with rough classifiers. Wydawnictwo Akademii Ekonomicznej we Wroclawiu, Wroclaw (to appear) (in Polish)Google Scholar
  26. PiaLen] Piasta, Z., Lenarcik, A.: Learning rough classifiers from large databases with missing values. (in this book)Google Scholar
  27. [DL92]
    REDUCT System, Inc.: DataLogic/R reference manual, Regina, Canada (1992)Google Scholar
  28. [Rob65]
    Robinson, J.A.: A machine oriented logic based on the resolution principle. Journal Assoc. Comp. Mach. 12 (1965) 23–41CrossRefGoogle Scholar
  29. [SieJach93]
    Sierpinska, M., Jachna, T.: The company evaluation according to international standards, Wydawnictwo Naukowe PWN, Warszawa (1993) (in Polish)Google Scholar
  30. [Skabek96]
    Skabek, K.: Computer system supporting credit decisions. The Master Thesis, Silesian Technical University, Gliwice (1996) (in Polish)Google Scholar
  31. [Slow92]
    Slowinski, R. (ed.): Intelligent Decision Support — Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  32. [SlowZop95]
    Slowinski, R., Zopounidis, C.: Application of the rough set approach to evaluation of bankruptcy risk. International J. Intelligent Systems in Accounting, Finance & Management 4/1 (1995) 27–41Google Scholar
  33. VPoe197] Van den Poel, D.: Rough sets for database marketing (in this book)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Adam Mrózek
    • 1
  • Krzysztof Skabek
    • 1
  1. 1.Institute of Theoretical and Applied Computer SciencePolish Academy of SciencesGliwicePoland

Personalised recommendations