Skip to main content

Logical Database Models for Uncertain Data

  • Chapter
  • 201 Accesses

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 26))

Abstract

In recent years, a primary objective of the database community has been the incorporation of structured and complex data types. This has led to new database models based on both the established relational paradigm as well as the object-oriented paradigm. These new database models are the non-1NF relational data model (also called NF2 data model), object-oriented data model, and deductive object-oriented data model. These models are considered appropriate for modeling many non-traditional applications, such as CAD/CAM, imagery, multimedia, meteorology, geographic information systems, oceanography, etc. The NF2 data model is better suited for office automation systems. On the other hand, object-oriented databases are more appropriate for CAD/CAM, multimedia database and geographical, meteorological, and oceanographic applications. Object-oriented databases coupled with logic and as the more integrated approach, deductive object-oriented databases are more appropriate for knowledge intensive applications such as expert database systems. In this chapter, we introduce the logical database models such as the extended NF2 data model, the fuzzy object-oriented data model, and the fuzzy deductive object-oriented data model to deal with complex information and uncertainty that arise in non-conventional applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S., “Towards a Deductive Object-Oriented Database Language”, Data and Knowledge Engineering 5 (1990) 263–287.

    Article  Google Scholar 

  2. Abiteboul,S., R. Hull, V. Vianu, “ Foundations of Databases”, Addison Wesley, 1995.

    Google Scholar 

  3. Aksoy, D., Fuzzy Object Modeling in Object-Oriented Environment, M.S. Thesis, Department of Computer Engineering, Middle East Technical University, 1994.

    Google Scholar 

  4. Aksoy, D. and A. Yazici, “Criteria for Evaluating OODB Models”. The Eight International Symposium on Computer and Information Sciences -ISCIS VIII Proceedings, Istanbul-Turkey,(November 1993 ).

    Google Scholar 

  5. Bancilhon, C. Delobel and P. Kanellakis, Building an Object-Oriented Database System, (Morgan Kaufmann, 1992 ).

    Google Scholar 

  6. Barbara, D., H.Garcia-Molina and D. Porter, “A Probabilistic Relational Data Model”, Proceeding of Extended-Database Technology, 1990, 60–74.

    Google Scholar 

  7. Barnett, J.R., D.S. Batory, “A Uniform Mechanism to Support Long Fields and Nested Relations in Database Management Systems”, IEEE, 1989, 569–577.

    Google Scholar 

  8. Bayer, R., “MOOD: A Knowledge-Base System with Object-Oriented Deduction”, in: A. Makinouchi, Eds., Database Systems for Advanced Applications’91, (World Scientific, 1991 ) 320–329.

    Google Scholar 

  9. Bertino, E. and L. Martino, “Object-Oriented Database Management Systems: concepts and issues”, IEEE Computer, Vol. 24, No 4, pp 33–47, (April 1991).

    Article  Google Scholar 

  10. Biswas, P. and A. Kandel, “Imprecise Object Models: A Key to Conceptualizing Knowledge Based Management Systems”, Fuzzy Sets and Systems, 58, North Holland (1993).

    Google Scholar 

  11. Bordogna, G., D. Lucarella, G. Pasi, “A Fuzzy Object-Oriented Data Model”, Proceedings of the IEEE 3rd International Conference on Fuzzy Systems, pp. 313–318, 1994.

    Google Scholar 

  12. Bose, R., “Strategy for Integrating Object-Oriented and Logic Programming”, Knowledge-Based Systems 7 (1994) 66–74.

    Article  Google Scholar 

  13. Bostan, B., “Modeling Uncertainty in a Deductive Object-Oriented Database”, M.S. Thesis, Department of Computer Engineering, Middle East Technical University, 1997.

    Google Scholar 

  14. Buckles, B.P. and F.E. Petry, “Network Data Models for Representation of Uncertainty”, Fuzzy Sets and Systems, 38, (1987).

    Google Scholar 

  15. Buckles, B. P. and F. E. Petry, “A Fuzzy Representation of Data for Relational Databases”, Fuzzy Sets and Systems 7 (1982) 213–226.

    Article  MATH  Google Scholar 

  16. Carey, M.J., D.J. DeWitt, J.E. Richardson, E.J. Shekita, “Object and File Management in the EXODUS Extensible Database System”, Proceedings of the 1986 VLDB Conference, Kyoto Japan, August 1986.

    Google Scholar 

  17. Caseau, Y.,“The LAURE Model for Object-Oriented Logic Databases”, in:.A. Makinouchi, Eds., Database Systems for Advanced Applications’91, (World Scientific, 1991 ) 411–420.

    Google Scholar 

  18. Cacace, F., S. Ceri, S. Crespi-Reghizzi, L. Tanca, R. Zicari, “Integrating Object-Oriented Data Modeling with a Rule-Based Programming Paradigm”, ACM SIGMOD 1990, pp. 225–236.

    Google Scholar 

  19. Chen, Q., W. W. Chu, “HILOG: A Higher-Order Logic Programming Language for non-1NF Deductive Languages”, Deductive and Object-Oriented Databases, Elsevier Publishers B. V. (North Holland), pp 431–452, 1990.

    Google Scholar 

  20. Chou, N. and D. Dewitt, “An Evaluation of Buffer Management Strategies for Relational Database Systems”, Proceedings of the VLDB Conference, Stockholm - Switzerland, (August 1985).

    Google Scholar 

  21. Colby, L.S., “A Recursive Algebra for Nested Relations”, Information Systems, Vol. 15, No. 5, 1990, 567–562.

    Article  MathSciNet  Google Scholar 

  22. Dadam, P., K. Kuespert, F. Andersen, R. Blanken, R. Erbe, J. Guensuer, V Lum, P. Pistor, G. Walch, “A DBMS Prototype to Support Extended NFL Relations: An Integrated View on Flat Tables and Hierarchies”, Proceedings: ACM SIGMOD, 1986.

    Google Scholar 

  23. De Caluwe, R., Fuzzy and Uncertain Object-Oriented Databases, World Scientific Pub. Co., 1997.

    Google Scholar 

  24. Dubois, D., H. Prade and J. Rossazza., “Vagueness, Typicality, and Uncertainty in Class Hierarchies”, Int. Journal of Intelligent Systems 6 (1991) 167–183.

    Article  Google Scholar 

  25. Dogac, A., M. T. Ozsu, A. Biliris, T. Sellis. “Object-Oriented Database Systems”, NATO Advanced Study Institute, Kusadasi, Turkiye (1993)

    Google Scholar 

  26. Elmasri, R. and S. B. Navathe, Fundamentals of Database Systems, Second Edition, ( Benjamin/Cummings, 1994 ).

    MATH  Google Scholar 

  27. George, R., B. P. Buckles and F. E. Petry, “Modelling Class Hierarchies in the Fuzzy Object-Oriented Data Model,” Fuzzy Sets and Systems 60 (1993) 259272.

    Google Scholar 

  28. George, R., R. Srikanth, F. E. Petry, and B. P. Buckles, “Uncertainty Management Issues in the Object-Oriented Data Model,” IEEE Transactions on Fuzzy Systems, Vol. 4, No. 2, May 1996.

    Google Scholar 

  29. Graham, I., Object-Oriented Methods, ( Addison Wesley, Wokingham, 1991 ).

    MATH  Google Scholar 

  30. Graham, I., “Fuzzy Logic in Commercial Expert Systems–Results and Prospects”, Fuzzy Sets and Systems, 40 (1991) 451–472.

    Article  Google Scholar 

  31. Grant,J., “Incomplete Information in a Relational Database”, Fundamental Informaticae, Vol. 3, 1980, 363–378.

    MathSciNet  Google Scholar 

  32. Greco, S. N. Leone and P. Rullo, “COMPLEX: An Object-Oriented Logic Programming System”, IEEE Trans. on Knowledge Engineering 4 (1992) 344–359.

    Article  Google Scholar 

  33. Hadipriono, F. C. and T. J. Ross, “A Rule-Based Fuzzy Logic Deduction Technique for Damage Assessment of Protective Structures”, Fuzzy sets and Systems 44 (1991) 459–468.

    Article  Google Scholar 

  34. Haskin, R.L., R.A. Lorie, “On Extending the Functions of a Relational System” Proceedings: ACM SIGMOD, June 1982, 207–212.

    Google Scholar 

  35. Inoue, Y., S. Yamamoto, S. Yasunobu. “Fuzzy set object: fuzzy set as first-class object”. In IFSA ‘81 Conference Proceedings, Brussels, ( July 1991 ).

    Google Scholar 

  36. Inoue, Y., S. Yamamoto, S. Yasunobu. “Object-Oriented Fuzzy Set Manipulation - Internal Data Structures”. Proceedings of IFSA ‘81, Brussels, (July 1991).

    Google Scholar 

  37. Jamil, H. and L. Lakshmanan, “ORLOG: A Logic for Semantic Object-Oriented Models”, Proc. of CIKM’92 pp 584–592, 1992.

    Google Scholar 

  38. Jaeschke, G. and H. Schek, “Remarks on the Algebra of Non First Normal Form Relations,” Proc. of the ACM_SIGACT-SIGMOD Symposium on Principles of Database Systems, Los Angeles, March 1982, 124–138.

    Google Scholar 

  39. Kerry, R., Integrating Knowledge-Based and Database Management Systems, (Ellis Horwood, 1990 ).

    Google Scholar 

  40. Kershberg, L., Expert Database Systems, Proceedings from the 2nd int. Conf., (Benjamin/Cummings, 1989 ).

    Google Scholar 

  41. Kifer, M. and G. Lausen, “F-Logic: A Higher-Order Language for Reasoning about Objects”, Inheritance, and Scheme, Proceedings of the 1989 ACM SIGMOD International Conference on the Management of Data, SIGMOD RECORD 18 (1989), 134–145.

    Article  Google Scholar 

  42. Kifer, M. and J. Wu, “A Logic Programming with Complex Objects”, Journal of Computer and System Sciences 47 (1993) 77–120.

    Article  MathSciNet  MATH  Google Scholar 

  43. Kim, W., and F.H. Lochovsky, eds., Object-Oriented Concepts, Databases and Applications, Addison-Wesley, 1989.

    Google Scholar 

  44. Koyuncu, M. and A. Yazici, A Fuzzy Object-Oriented Database Framework with Logic, METU, Dept. of Computer Engineering, Technical Report 95–4, ( Ankara, Turkey, 1995 ).

    Google Scholar 

  45. Lee K. and S. Lee, “An Object-Oriented Approach to Data/Knowledge Modeling Based on Logic”, Proc. of the 6th Int. Conf. on Data Engineering (1990) 289–294.

    Google Scholar 

  46. Ling, T.C., K.K. Phang, M.H. Yaacob, “Development of Fuzzy Database Systems”, Malaysian Journal of Computer Science, Vol.10, No. 1. 5

    Google Scholar 

  47. W. Lipski, “On Databases with Incomplete Information”, Journal of the ACM, 28,pp 41–70 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  48. Lou, Y. and Z. M. Ozsoyoglu, “LLO: An Object-Oriented Deductive Language with Methods and Method Inheritance”, Proc. of the ACM SIGMOD’91, pp. 198–207, 1991.

    Google Scholar 

  49. Makinouchi, A., “A Consideration on Normal Form of Not-Necessarily Normalized Relations in the Rel. Data Model,” Proc. of the Third International Conference on Very Large Databases, Tokyo, Oct.1977, 447–453.

    Google Scholar 

  50. McCabe, F. G., Logic and Objects, ( Prentice Hall, 1992 ).

    Google Scholar 

  51. Mattos, N. M. “An Approach to Knowledge-Base Management”, Springer-Verlag Publishing, 1991.

    Google Scholar 

  52. Mengchi Liu, “The ROL Deductive and Object-Oriented Database System”, Technical Report, http://www.cs.uregina.caAverb+-+mliu.

    Google Scholar 

  53. Motro, A., “Accommodating Imprecision in Database Systems: Issues and Solutions,” SIGMOD RECORD, Vol. 19, No. 4, December 1990, 69–74.

    Article  Google Scholar 

  54. Motro, A., “VAGUE: A User Interface to Relational Databases That Permits Vague Queries,” ACM Transactions on Office Information System, Vol. 6, No. 3, July 1988, 115–143.

    Google Scholar 

  55. Niemi, T., “A Seven-Tuple Representation for Hierarchical Data Structures”, Information Systems, Vol. 8, No. 3, 1983, 151–157.

    Article  MathSciNet  MATH  Google Scholar 

  56. Ozsoyoglu, G., Z.M. Ozsoyoglu, and V. Matos, “Extending Relational Algebra and Rel. Calculus with Set-Valued Attributes and Aggregate Functions”, ACM Trans. on Database Systems, Vol. 12, No. 4, December 1987, 566–592.

    Article  MathSciNet  Google Scholar 

  57. Petry, F.E., Fuzzy Databases: Principles and Applications, Kluwer Acamedic Publishers, 1996.

    Book  MATH  Google Scholar 

  58. Prade, H. and C. Testemale, “Generalizing Database Relational Algebra for the Treatment of Incomplete or Uncertain Information and Vague Queries”, Information Sciences 34 (1984) 115–143.

    Article  MathSciNet  MATH  Google Scholar 

  59. Rossazza, J-P. D. Dubois, H. Prade, “A Hierarchical Model of Fuzzy Classes,” in Fuzzy and Uncertain Object-Oriented Databases: Concepts and Models, ed. Rita de Caluwe, World Scientific, Singapore, 1997.

    Google Scholar 

  60. Roth, M.A., H.F. Korth, and D.S. Batory, “SQL/NF: A Query Language For Non-1NF Relational Databases”, Information Systems, Vol. 12, 1987, 99–114.

    Article  Google Scholar 

  61. Schek, H.J. and M.H. Scholl, “The Relational Model with Relational-Valued Attributes,” Information Systems, Vol. 11, No. 2, 1986, 137–147.

    Article  MATH  Google Scholar 

  62. Schrunder, C. P., J. E. Galletly and J. R. Bicheno, “A Fuzzy Knowledge-Based Decision Support Tool for Production Operations Management”, Expert Systems 11 (1994) 3–11.

    Article  Google Scholar 

  63. Terano, T., K. Asai, M. Sugeno. Fuzzy Systems Theory and its Applications, Academic Press,- UK (1992).

    Google Scholar 

  64. Teorey,T.J., D.Yang, J.P.Fry, “A logical Design Methodology for Relational Databases Using the Extended Entity- Relationship Model”, Computing Surveys, Vol. 18, No. 2, June 1986, 197–222.

    Article  Google Scholar 

  65. Thomas,S.J. and P.C. Fischer, “Nested Relational Structures, ”Advances in Computing Research 3“, JAI Press, 269–307.

    Google Scholar 

  66. Ullman, J. D. and C. Zaniolo, “Deductive Databases: Achievements and Future Directions”, SIGMOD RECORD 19 (1990) 75–81.

    Article  Google Scholar 

  67. Umano, M., “Retrieval from Fuzzy Database by Fuzzy Relational Algebra”, Proceedings of IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, Marseille–France, pp 1–6, (1983).

    Google Scholar 

  68. Umano, M., S. Fukaumi, M. Mizummoto, K. Tanaka, “On Retrieval Processing from Fuzzy Databases”, Preprints of Working Group of IEICE of Japan, 80, 204, pp 45–54, AL 80–50.

    Google Scholar 

  69. Van Gucht, D., “On the Expressive Power of the Extended Relational Algebra for the Unnormalized Relational Model”, Proc. 6“ PODS, San Diego, 1987, 302–312.

    Google Scholar 

  70. Van Gyseghem, N., R. De. Caluwe and R.Vandenberghe, “UFO: Uncertainity and Fuzziness in an Object-Oriented Model”, FUZZ-IEEE’93, (San Fransisco, 1993 ).

    Google Scholar 

  71. Venkatramen, S.S. and A. Sen, “Formalization of an IS-A based Extended Nested Relation Data Model”, Information Systems, Vol. 20, No. 1, 1993, 5357.

    Google Scholar 

  72. Yazici, A., R. George, B.P. Buckles, and F.E. Petry, “A Survey of Conceptual and Logical Data Models for Uncertainity Management”, in: L.A. Zadeh and J. Kacprzyk, eds., Fuzzy Logic for Management of Uncertainity, ( John Wiley and Sons, New York, 1992 ) 607–644.

    Google Scholar 

  73. Yazici, A., B. P. Buckles and F. E. Petry, “A Semantic Data Model Approach to Knowledge-Intensive Applications”, International Journal of Expert Sytems: Research and Applications 8 (1995) 79–91.

    Google Scholar 

  74. Yazici, A and M. Koyuncu, “Fuzzy Object-Oriented Database Modeling Coupled with Fuzzy Logic,” International Journal for Fuzzy Sets and Systems, 1997, Vol. 89, 1–26.

    Article  Google Scholar 

  75. Yazici A., R. George D. Aksoy, “Extending the Similarity-Based Fuzzy Object-Oriented Data Model”, Information Sciences (International Journal) (to appear).

    Google Scholar 

  76. Yu, L. and S. L. Osborn, “An Evaluation Framework for Algebraic Object-Oriented Query Models,” Proceedings of International Conference on Data Engineering, LA, 1991, pp. 670–677.

    Google Scholar 

  77. Zadeh, L.A, “Fuzzy Sets”, Information and Control 8 (1965) 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  78. Zadeh, L.A, “Similarity Relations and Fuzzy Orderings”, Information Science 3 (1971) 177–200.

    Article  MathSciNet  MATH  Google Scholar 

  79. Zadeh, L.A, “Knowledge Representation in Fuzzy Logic”, IEEE Transactions on Knowledge and Data Engineering, 1 (1989), 89–100.

    Article  Google Scholar 

  80. Zadeh, L.A. and J. Kacprzyk, Fuzzy Logic for the Management of Uncertainity, (John Wiley and Sons, 1992 ).

    Google Scholar 

  81. Zaniola, C., “Database Relations with Null Values,” Journal of Computer and System Sciences, Vol. 28, No. 2, 1986, 142–166.

    Google Scholar 

  82. Zdonik, S. B. and D. Maier, Readings in Object-Oriented Database Systems, (Morgan Kaufmann, 1990 ).

    Google Scholar 

  83. Zemankova-Leech,M., A.Kandel, “Implementing Imprecision in Information Systems”, Infromation Sciences, 37, pp 107–141 (1985)

    Article  Google Scholar 

  84. Zicari, R., “Incomplete Information in Object Oriented Databases”, Object-Oriented Databases: Analysis, Design and Construction, IFIP DS-4 Conference Proceedings,. Windermere-UK. (July 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yazici, A., George, R. (1999). Logical Database Models for Uncertain Data. In: Fuzzy Database Modeling. Studies in Fuzziness and Soft Computing, vol 26. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1880-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1880-2_4

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-11809-2

  • Online ISBN: 978-3-7908-1880-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics