Mathematical Foundations of Fuzzy Logic

  • Michael Zaus
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 27)


Our motivation to enter into the foundations of fuzzy logic is based on five aspects. First, fuzzy logic complements parity logic in a unique way and represents currently the most versatile branch of approximate and causal reasoning, in particular with respect to fuzzy cognitive maps in almost every field of psychology. Second, the space B l is of fundamental importance to fuzzy logic, because it provides the search space for optimizing fuzzy unit (fit) vectors A = (a l, a 2, ..., a n ) in the unit hypercube I n . The point at issue is that linguistic variables mean different things to different people. Even experts differ in categorizing the values of information and control variables. This is a problem of meaning, and it is solvable in principle by subjecting fit-vectors of length n to evolutionary genetic optimization, i.e. to submit them to special parity feedback machines which localize satisficing or optimal fit-vectors A in I n , whose artificial genotypes are l-dimensional bit-vectors in B l which encode these fit-vectors.


Membership Function Fuzzy Logic Membership Degree Parity Logic Mathematical Foundation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Michael Zaus
    • 1
  1. 1.Institute for Cognitive ScienceUniversity of OldenburgOldenburgGermany

Personalised recommendations