Advertisement

References

  • Boz̊ena Kostek
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 31)

Keywords

Soft Computing Sound Quality Organ Pipe Musical Database Machine Discovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AES20–1996, Recommended Practice for Professional Audio - Subjective Evaluation of Loudspeakers,J. Audio Eng. Soc., Vol. 44, No. 5, pp. 386–401, 1996.Google Scholar
  2. [2]
    AMERICAN NEURALOGIX Inc., NIX 230 Fuzzy Microcontroller Application Note, Sanford, U.S.A., 1992.Google Scholar
  3. [3]
    AMERICAN NEURALOGIX Inc., FMC Development System - Technical Note, Sanford, U.S.A., 1992.Google Scholar
  4. [4]
    ANDO Y., Calculation of Subjective Preference at Each Seat in the Concert Hall,J. Acoust. Soc. Amer., Vol. 74, No. 3, pp. 873–887,1983.Google Scholar
  5. [5]
    ANDO Y., GOTTLOB D., Effects of Early Multiple Reflections on Subjective Preference Judgments of Music Sound Fields, J. Acoust. Soc. Amer., Vol. 65, No. 2, pp. 524–527, 1979.ADSCrossRefGoogle Scholar
  6. [6]
    ANDO S., YAMAGUCHI K., Statistical Study of Spectral Parameters in Musical Instrument Tones, J. Acoust. Soc. of America, Vol. 94, No. 1, pp. 37–45, 1993.ADSCrossRefGoogle Scholar
  7. [7]
    ANDO Y., SATO S., NAKAJIMA T., SAKURAI M., Acoustic Design of a Concert Hall Applying the Theory of Subjective Preference and the Acoustic Measurement after Construction, Acta Acustica, Vol. 83, pp. 635–643, 1997.Google Scholar
  8. [8]
    BANK M., TAICHER A., KARABELNIK Y., An Objective Method for Sound Quality Estimation of Compression Systems, 101st Audio Eng. Soc. Cony., Preprint No. 4373, Los Angeles, 1996.Google Scholar
  9. [9]
    BAO Z., A Tentative Study of the Fuzzy Feature of the Sound Quality Perception,84th Audio Eng. Soc. Cony., Preprint No. 2640, Paris, 1988.Google Scholar
  10. [10]
    BARRON M, MARSHALL A.H., Spatial Impression Due to Early Lateral Reflections in Concert Halls: the Derivation of Physical Nature, J. Sound Vib., Vol. 77, pp. 211–232, 1981.ADSCrossRefGoogle Scholar
  11. [11]
    BARRON M., LEE L-J., Energy Relations in Concert Auditoriums. I, J. Acoust. Soc. Amer., Vol. 84, No. 2, pp. 618–628, 1988.ADSCrossRefGoogle Scholar
  12. [12]
    BAZAN J.G., SKOWRON A., SYNAK P., Discovery of Decision Rules from Experimental Data, in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 276–279, 1994.Google Scholar
  13. [13]
    BEATON R.J., WONG P., A Disk-based System for the Subjective Assessment of High Quality Audio, 94th Audio Eng Soc. Cony., Preprint No. 3497, Berlin, 1993.Google Scholar
  14. [14]
    BEAUCHAMP J.W., Unix Workstation Software for Analysis, Graphics, Modification, and Synthesis of Musical Sounds,94th Audio Eng. Soc. Cony., Preprint No. 3479, Berlin, 1933.Google Scholar
  15. [15]
    BEERENDS J.G., STEMERDINK J.A., Measuring the Quality of Audio Devices, 90th Audio Eng. Soc. Cony., Preprint No. 3070, Paris, 1991.Google Scholar
  16. [16]
    BEERENDS J.G., STEMERDINK J.A., A Perceptual Audio Quality Measure Based on a Psychoacoustic Sound Representation, J. Audio Eng. Society, Vol. 40, No. 12, pp. 963–978, 1992.Google Scholar
  17. [17]
    BEERENDS J.G., STEMERDINK J.A., A Perceptual Speech-Quality Measure Based on a Psychoacoustic Sound Representation, J. Audio Eng. Soc., Vol. 42, pp. 115–123, 1994.Google Scholar
  18. [18]
    BENADE A.H., On the Propagation of Sound Waves in a Cylindrical Conduit,J. Acoust. Soc. Amer, Vol. 44, No. 2, pp. 616–623,1968.Google Scholar
  19. [19]
    BERANEK L.L., Music, Acoustics and Architecture, J. Wiley and Sons, New York, 1962.Google Scholar
  20. [20]
    BERANEK L.L., Concert Hall Acoustics,J. Acoust. Soc. Amer, Vol. 92, No. 1, pp. 1–40,1992.Google Scholar
  21. [21]
    BEYER R.T., Acoustic, Acoustics, J. Acoust Soc. Amer., Vol. 98, No. 1, pp. 33–34, 1995.ADSCrossRefGoogle Scholar
  22. [22]
    BEZDEK J.C, HATHAWAY R.J., SABIN M.J., TUCKER W.T., Convergence Theory for Fuzzy c-Means Counterexamples and Repairs, IEEE Trans. Syst., Man, Cybem., Vol. SMC-17, No. 5, 1987.Google Scholar
  23. [23]
    BILLINGS S.A., CHEN S., Extended Model Set, Global Data and Threshold Model Identification of Severely Non-Linear Systems, hit J. Control, Vol. 50, No. 5, pp. 1897–1923, 1989.MATHCrossRefGoogle Scholar
  24. [24]
    BLAUERT J., LINDEMANN W., Auditory Spaciousness: Some Further Psychoacoustic Studies, J. Acoust. Soc. Amer., Vol. 80, No. 5, pp. 553–542, 1986.ADSGoogle Scholar
  25. [25]
    BLAUERT J., JEKOSCH U., Sound Quality Evaluation–a Multi-Layered Problem, Acustica, Vol. 83, No. 5, pp. 747–753, 1997.Google Scholar
  26. [26]
    BODDEN M., Instrumentation for Sound Quality Evaluation,Acustica, Vol. 83, No. 5, pp. 775–783,1997.Google Scholar
  27. [27]
    BOSC P., KACPRZYK J. (Eds.), Fuzziness in Database Management Systems, Physica-Verlag (Springer-Verlag), Heidelberg 1995.MATHGoogle Scholar
  28. [28]
    BOSE B. K., Expert System, Fuzzy Logic, and Neural Network Applications in Power Electronics and Motion Control, IEEE, Vol. 82, No. 8, pp. 1303–1323, 1994.CrossRefGoogle Scholar
  29. [29]
    BRADLEY J.S., Experience with New Auditorium Acoustic Measurements,J. Acoust. Soc. Amer., Vol. 73, No. 6, pp. 2051–2058,1993.Google Scholar
  30. [30]
    BROWN J.C., Musical Fundamental Frequency Tracking Using a Pattern Recognition Method,J. Acoust. Soc. Amer, Vol. 92, No. 3, pp. 1394–1402,1992.Google Scholar
  31. [31]
    CADDY S., POLLARD H.F., Transient Sounds in Organ Pipes, Acustica, No. 7, pp. 227–280, 1957.Google Scholar
  32. [32]
    CAMBRIGE P., TODD M., Audio Data Compression Techniques, 94th AES Convention, Preprint No. 3584, Berlin, 1993.Google Scholar
  33. [33]
    CARLSEN J.C., FRICKE J.J., Comparability of Two Measures of Musical Prototypes, Technical Report Series No. 8803, Univ. of Washington, Seattle, 1988.Google Scholar
  34. [34]
    CHAFE C., JAFFE D., Source Separation and Note Identification in Polyphonic Music, Proc. IEEE-IECETASJ (Intern. Conf. on Acoustics, Speech, and Signal Proc., pp. 1289–1292, Tokyo, 1986.Google Scholar
  35. [35]
    CHMIELEWSKI M.R., GRZYMALA-BUSSE J.W., et. al., The Rule Induction System LERS–a Version for Personal Computers, Foundations of Computing and Decision Sciences, Vol. 18, No. 3–4, pp. 181–212, Poznan, 1993.MATHGoogle Scholar
  36. [36]
    CHMIELEWSKI M.R., GRZYMALA-BUSSE J.W., Global Discretization of Continuous Attributes as Preprocessing for Machine Learning, in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 294–301, 1994.Google Scholar
  37. [37]
    CHOI H., WILLIAMS W., Improved Time Frequency Representation of Multi-Component Signals using Exponential Kernels, IEEE Trans. ASSP, Vol. 37, pp. 862–871, 1989.ADSCrossRefGoogle Scholar
  38. [38]
    CHRISTENSEN N.S., CHRISTENSEN K.E., WORM H., Classification of Music Using Neural Net, 92nd Audio Eng. Soc. Cony., Preprint No. 32–96, Vienna, 1992.Google Scholar
  39. [39]
    CHUI CH. K., MONTEFUSCO L., PUCCO L. (Eds.), Wavelets - Theory, Algorithms and Applications, Academic Press, Inc., San Diego, U.S.A., 1994.Google Scholar
  40. [40]
    COLOMES C., LEVER M., RAULT J.B., DEHERY Y.F., A Perceptual Model Applied to Audio Bit-rate Reduction, J. Audio Eng. Soc., Vol. 43, No. 5, pp. 233–240, 1995.Google Scholar
  41. [41]
    COLOMES C., LEVER M., RAULT J.B., DEHERY Y.F., FAUCON G., A Perceptual Objective Measurement System (POM) for the Quality Assessment of Perceptual Codecs, 96th AES Convention, Preprint No. 3801, Amsterdam, 1994.Google Scholar
  42. [42]
    COLTMAN J.W., Sounding Mechanism of the Flute and Organ Pipe,J. Acoust. Soc. Amer., Vol. 44, No. 4, pp. 983–992,1968.Google Scholar
  43. [43]
    COLTMAN J.W., Jet Drive Mechanisms in Edge Tones and Organ Pipes,J. Acoust. Soc. Amer, Vol. 60, No. 3, pp. 725–733,1976.Google Scholar
  44. [44]
    CONDAMNES R., Les criteres physiques de la qualité acoustique des salles,Revue d’Acoustique, No. 26, p. 192–204,1973.Google Scholar
  45. [45]
    COOK P.R., A Meta-Wind-Instrument Physical Model, and Meta-Controller for Real Time Performance Control, Proc. of the ICMC, San Jose, CA, U.S.A., 1992.Google Scholar
  46. [46]
    CZYZEWSKI A., SANKIEWICZ M., Subjective Methods for the Assessing Properties of Artificial Reverberation, 84th Audio Eng. Soc. Cony., Preprint No. 2643, Paris, 1988.Google Scholar
  47. [47]
    CZYZEWSKI A., A Method of Artificial Reverberation Quality Testing, J. Audio Eng. Soc., Vol. 38, No. 3, pp. 129–141,1990.Google Scholar
  48. [48]
    CZYZEWSKI A., KACZMAREK A., Multilayer Knowledge Base System for Speaker Independent Recognition of Isolated Words, Proc. RSKD-93, pp. 411–420, 1993.Google Scholar
  49. [49]
    CZYZEWSKI A., KACZMAREK A., Speech Recognition Systems Based on Rough Sets and Neural Networks, in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 97–100, 1994.Google Scholar
  50. [50]
    CZYZEWSKI A., KACZMAREK A., Speaker-independent Recognition of Isolated Words Using Rough Sets, Joint Conf. on Information Sciences, Wrightswille Beach, NC, U.S.A., pp. 397–400, 1995.Google Scholar
  51. [51]
    CZYZEWSKI A., Learning Algorithms for Audio Signal Enhancement. Part 2: Implementation of the Rough-Set Method for the Removal of Hiss, J. Audio Eng. Soc., Vol. 45, No. 11, pp. 931–943, 1997.Google Scholar
  52. [52]
    CZYZEWSKI A., KOSTEK B., ZIELINSKI S., Synthesis of Organ Pipe Sound Based on Simplified Physical Models, Archives of Acoustics, Vol. 21, No. 2, pp. 131–147, 1996.Google Scholar
  53. [53]
    CZYZEWSKI A., KOSTEK B., Tuning the Perceptual Noise Reduction Algorithm Using Rough Sets, Lecture Notes in Artificial Intelligence No. 1424, in Rough Sets and Current Trends in Computing, (POLKOWSKI L., SKOWRON A., Eds.), Proc. RSCTC’98, pp. 467–474, Springer-Verlag, Heidelberg and New York 1998.CrossRefGoogle Scholar
  54. [54]
    CZYZEWSKI A., KRÓLIKOWSKI R., Application of Fuzzy Logic and Rough Sets to Audio Signal Enhancement, chapter in Rough Fuzzy Hybridization: A New Trend in Decision Making, PAL S.K., SKOWRON A. (Eds.), Springer-Verlag, Singapore 1998 (in print).Google Scholar
  55. [55]
    DAMASKE P., ANDO Y., Interaural Crosscorrelation for Multichannel Loudspeaker Reproduction, Acustica, Vol. 27, pp. 232–238, 1972.Google Scholar
  56. [56]
    DE BRUN N A., Timbre-Classification of Complex Tones,Acustica, Vol. 40, pp. 108–114,1978.Google Scholar
  57. [57]
    DE MILANO (Ed.), Mind Over MIDI, Keyboard Magazine Basic Library, California, U.S.A., 1987.Google Scholar
  58. [58]
    DE POLI G., PICCIALLI A., ROADS C., Representation of Musical Signals, MIT Press, London 1991.Google Scholar
  59. [59]
    DONNADIEU S., McADAMS S., WINSBERG S., Caractérisation du Timbre des Sons Complexes. I. Analyse Multidimensionelle, J. de Physique IV, Vol. 4, 3 CFA, I, pp. 593–596, 1994.Google Scholar
  60. [60]
    EISLER H., Measurement of Perceived Acoustic Quality of Sound-Reproducing Systems by Means of Factor Analysis,J. Acoust. Soc. Amer., Vol. 39, No. 3, pp. 484–492,1966.Google Scholar
  61. [61]
    EVANGELISTA G., Pitch-Synchronous Wavelet Representations of Speech and Music Signals, IEEE Trans. Signal Proc., Vol. 41, No. 12, pp. 3313–3330, 1993.ADSMATHCrossRefGoogle Scholar
  62. [62]
    FABRE B., HIRSCHBERG A., WIJNANDS A.P.J., Vortex Shedding in Steady Oscillation of a Flue Organ Pipe, Acta Acustica, Vol. 82, No. 6, pp. 863–877, 1996.Google Scholar
  63. [63]
    FASTL H., The Psychoacoustics of Sound-Quality Evaluation,Acustica, Vol. 83, No. 5, pp. 754–764,1997.Google Scholar
  64. [64]
    FEl’l’EN B., STEFFEN E., VAHLE T., MERKEL A., Coding Margin, a Measure for the Headroom of Perceptual Codecs, Intern. Cony. on Sound Design, pp. 336–355, Tonmeistertagung, Karlsruhe, 1996.Google Scholar
  65. [65]
    FLETCHER N.H., Nonlinear Interactions in Organ Flue Pipes, J. Acoust. Soc. Amer., Vol. 56, No. 2, pp. 645–652,1974.Google Scholar
  66. [66]
    FLETCHER N.H., Transients in the Speech of Organ Flue Pipes–A Theoretical Study, Acustica, Vol. 34, pp. 224–233, 1976.Google Scholar
  67. [67]
    FLETCHER N.H., ROSSING T.D., The Physics of Musical Instruments, Springer-Verlag, New York 1991.CrossRefGoogle Scholar
  68. [68]
    de FURIA S., SCACCIAFERRO J., The MIDI Book - Using MIDI and Related Interfaces, Third Earth Production, 1986.Google Scholar
  69. [69]
    GADE A. C., Assessment of Sound Quality in Auditoria, 90th Audio Eng Soc. Cony., Preprint No. 3071, Paris, 1991.Google Scholar
  70. [70]
    GENOSSAR T., PORAT M., Can One Evaluate the Gabor Expansion Using Gabor’s Iterative Algorithm, IEEE Trans. Signal Processing, Vol. 40, No. 8, pp. 1852–1861, 1992.ADSMATHCrossRefGoogle Scholar
  71. [71]
    GREWIN C., BERGMAN S., KEJVING O., A Listening Test System for Evaluation of Audio Equipment, 80th Audio Eng. Soc. Cony., Preprint No. 2335, Montreux, 1986.Google Scholar
  72. [72]
    GRZYMALA-BUSSE J.W., LAKSHMANAN A., LEA/I2 with Interval Extension: An Induction Algorithm for Numerical Attributes, Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 67–73, Tokyo, 1996.Google Scholar
  73. [73]
    GRZYMALA-BUSSE D.M., GRZYMALA-BUSSE J.W., Comparison of Machine Learning and Knowledge Against Methods of Rule Induction Based on Rough Sets, Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer-Verlag, London 1994.Google Scholar
  74. [74]
    GUILLEMAIN P., KRONLAND-MARTINET R., Parameters Estimation Through Continuous Wavelet Transform for Synthesis of Audio-Sounds, 90th Convention AES, Preprint No. 3009 (A-2), Paris, 1991.Google Scholar
  75. [75]
    GUSKI R., Psychological Methods for Evaluating Sound Quality and Assessing Acoustic Information, Acustica, Vol. 83, No. 5, pp. 765–774,1997.Google Scholar
  76. [76]
    HAWKES R.J., DOUGLAS H., Subjective Acoustic Experience in Concert Auditoria, Acustica, Vol. 24, pp. 236–250, 1971.Google Scholar
  77. [77]
    HERRE J., BRANDENBURG K., EBERLEIN E., GRILL B., Second Generation ISO/MPEG Audio Layer III Coding, 98th AES Convention, Preprint No. 3939, Paris, 1995.Google Scholar
  78. [78]
    HONG T-P., CHEN J-B., Automatic Acquisition of Membership Functions by Data Analysis, Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 315–319, Tokyo, 1996.Google Scholar
  79. [79]
    HOUTGAST T., STEENEKEN H.J.M., A Review of the MTF Concept in Room Acoustics and its Use for Estimating Speech Intelligibility in Auditoria, J. Acoust. Soc. Amer., Vol. 77, No. 3, pp. 1069–1077, 1985.ADSCrossRefGoogle Scholar
  80. [80]
    HUA L., YUANDONG J., Fuzzy-Logic Tools on Tap for IC Wafers, IEEE Circuits and Devices, pp. 30–35, 1994.Google Scholar
  81. [81]
    HULBERT G.M., BAXA D.E., SEIREG A., Criterion for Quantitative Rating and Optimum Design of Concert Halls, J. A.oust. Soc. Amer., Vol. 71, No. 3, pp. 619–629, 1982.ADSCrossRefGoogle Scholar
  82. [82]
    ISHIKAWA M., Structural Learning and Rule Discovery, Proc. 3rd Conf. Neural Networks and Their Applications, pp. 17–29, Kule, Poland 1997.Google Scholar
  83. [83]
    IVERSON P., KRUMHANSL C.L., Isolating the Dynamic Attributes of Musical Timbre, J. Acoust. Soc. Amer., Vol. 94, No. 5, pp. 2595–2603, 1993.ADSCrossRefGoogle Scholar
  84. [84]
    JOHNSTON J., Transform Coding of Audio Signals Using Perceptual Noise Criteria,J. IEEE Select. Areas on Commun., Vol. 6, No. 2, 1988.Google Scholar
  85. [85]
    JULLIEN J.P., Qualite acoustique d’une salle, CNET, Lannion 1986.Google Scholar
  86. [86]
    KACPRZYK J., FEDDRIZZI M. (eds), Fuzzy Regression Analysis, Vol. 1, Omnitech Press, Warsaw and Physica-Verlag (Springer-Verlag), Heidelberg and New York 1992.MATHGoogle Scholar
  87. [87]
    KACZMAREK A., CZYZEWSKI A., KOSTEK B., Investigating Polynomial Approximation for the Spectra of the Pipe Organ Sound, Archives of Acoustics, (in print), 1998.Google Scholar
  88. [88]
    KARNIN E.D., A simple procedure for pruning back propagation trained neural networks, IEEE Trans. Neural Networks, Vol. 1, pp. 239–242, 1990.CrossRefGoogle Scholar
  89. [89]
    KAY S.M., Modern Spectral Estimation: Theory and Application, Englewood Cliffs, New Jersey 1988.Google Scholar
  90. [90]
    KEEFE D.H., LADEN B., Correlation Dimension of Woodwind Multiphonic Tones, Technical Report Series No. 9102, Univ. of Washington, Seattle, 1991.Google Scholar
  91. [91]
    KEELER J.S., The Attack Transients of Some Organ Pipes,IEEE Trans. on Audio and Electroacoustics, AU-20, Vol. 5, pp. 378–391,1972.Google Scholar
  92. [92]
    KEIPER W., Sound Quality Evaluation in the Product Cycle,Acustica, Vol. 83, No. 5, pp. 784–788,1997.Google Scholar
  93. [93]
    KIRBY D., WATANABE K., Formal Subjective Testing of the MPEG-2 NBC Multichannel Coding Algorithm, 101st Audio Eng. Soc. Cony., Preprint No. 4418, Los Angeles, 1996.Google Scholar
  94. [94]
    KUPPEL W., Multidimensional Relationship between Subjective Listening Impression and Objective Loudspeaker Parameters,Acustica, Vol. 70, pp. 45–54, 1990.Google Scholar
  95. [95]
    KOSKO B., Neural Networks and Fuzzy Systems, Prentice-Hall Intern. Ed., New Yersey, 1992.Google Scholar
  96. [96]
    KOSKO B., Fuzzy Engineering, Prentice-Hall Intern. Ed., New Yersey, 1997.Google Scholar
  97. [97]
    KOSTEK B., CZYZEWSKI A., Articulation Features in the Digitally Controlled Pipe Organ, J. Audio Eng. Soc., Vol. 39, No. 5, p. 382, 1991, 90th AES Convention, Preprint No. 3023, Paris, 1991.Google Scholar
  98. [98]
    KOSTEK B., CZYZEWSKI A., Computer Modelling of the Pipe Organ Valve Action, J. Audio Eng. Soc., Vol. 40, No. 5, p. 440, 1992, 92nd AES Convention, Preprint No. 3266, Vienna, 1992.Google Scholar
  99. [99]
    KOSTEK B., Untersuchungen an Orgeltrakturen unter dem Aspekt musikalischer Artikulierung,Fortschritte Der Akustik, Teil A, Proc. DAGA ‘82, pp. 245–248, Berlin, 1992.Google Scholar
  100. [100]
    KOSTEK B., CZYZEWSKI A., Investigation of Articulation Features in Organ Pipe Sound, A.chives of Acoustics, Vol. 18, No. 2, 3, pp. 417–434, 1993.Google Scholar
  101. [101]
    KOSTEK B., Application des réseaux de neurones pour l’analyse de l’articulation musicale,J. de Physique IV, Vol. 4, pp. 597–600,1994.Google Scholar
  102. [102]
    KOSTEK B., Intelligent Control System Implementation to the Pipe Organ Instrument, in Rough Sets, Fuzzy Sets and Knowledge Discovery (ZIARKO W.P., Ed.), pp. 450–457, Springer-Verlag, London 1994.Google Scholar
  103. [103]
    KOSTEK B., Application of Learning Algorithms to Musical Sound Analyses,97th AES Cony., Preprint No. 3873, San Francisco, J. Audio Eng Soc. (Abstr), Vol. 42, No. 12, p. 1050,1994.Google Scholar
  104. [104]
    KOSTEK B., Rough Classification as a Tool for Acoustical Analyses,in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 81–84, 1994.Google Scholar
  105. [105]
    KOSTEK B., KACZMAREK A., Musical Sound Parametrization Methods Based on Spectral and Cepstral Transformations, Proc. VI Symposium on Sound Eng and Tonmastering, Warsaw, 1995.Google Scholar
  106. [106]
    KOSTEK B., Statistical Versus Artificial Intelligence Based Processing of Subjective Test Results,98th Audio Eng. Soc. Cony., Preprint No. 4018, Paris, J. Audio Eng. Soc. (Abstracts), Vol. 43, No. 5, p. 403, 1995.Google Scholar
  107. [107]
    KOSTEK B., Methoden kuenstlicher Intelligenz in Analysen des Musikklangs,Proc. DAGA’95, Saarbruecken, 1995.Google Scholar
  108. [108]
    KOSTEK B., Automatic Reasoning About Acoustic Data-Problems with Preprocessing, Classification and Decision Uncertainty,Proc. Conf of the Intelligent Data Analysis (IDA-95), The International Institute for Advanced Studies in Systems Research and Cybernetics, Vol. 1, pp. 99–103, Baden-Baden, 1995.Google Scholar
  109. [109]
    KOSTEK B., Distinctive Features of Musical Signal, Proc. VI Symposium on Sound Eng. and Tonmastering, Warsaw, 1995.Google Scholar
  110. [110]
    KOSTEK B., Computer Based Recognition of Musical Phrases Using the Rough Set Approach, Proc. Second Annual Joint Conference on Information Sciences, North Carolina, U.S.A., 1995.Google Scholar
  111. [111]
    KOSTEK B., Feature Extraction Methods for the Intelligent Processing ofMusical Signals,Proc. 99th Convention AES, Preprint No. 4076 (H4), New York, J. Audio Eng. Soc. (Abstracts), Vol. 43, No. 12, 1995.Google Scholar
  112. [112]
    KOSTEK B., SZCZERBA M., Parametric Representation ofMusical Phrases, 101st Audio Eng Soc. Cony., Preprint No. 4337 (D-3), Los Angeles, 1996.Google Scholar
  113. [113]
    KOSTEK B., SZCZERBA M., MIDI Database for the Automatic Recognition of Musical Phrases, 100th Convention AES, Preprint No. 4169 (E-2), Copenhagen, 1996.Google Scholar
  114. [114]
    KOSTEK B., CZYZEWSKI A., Automatic Classification of Musical Timbre Based on Learning Algorithms Applicable to Cochlear Implants, Proc. TASTED, Expert Systems, and Neural Networks, pp. 98–101, Honolulu, Hawaii, U.S.A., 1996.Google Scholar
  115. [115]
    KOSTEK B., SZCZERBA M., WIECZORKOWSKA A., Musical Databases - Construction and Analysis, Intern. Cony. on Sound Design, Proc. 19th Tonmeistertagung, Karlsruhe, 1996.Google Scholar
  116. [116]
    KOSTEK B., WIECZORKOWSKA A., Study of Parameter Relations in Musical Instrument Patterns, 100th Convention AES, Preprint No. 4173 (E-6), Copenhagen, J. A.dio Eng. Soc. (Abstracts), Vol. 44, No. 7 /8, p. 634, 1996.Google Scholar
  117. [117]
    KOSTEK B., CZYZEWSKI A., Method and Apparatus for the Electronic Control of the Pipe Organ, Polish Patent, No. 1699913, 1996.Google Scholar
  118. [118]
    KOSTEK B., SZCZERBA M., Rough Set-Based Analysis of Musical Databases, Proc. EUFIT’96, Vol.l, pp. 144–148, Aachen, 1996.Google Scholar
  119. [119]
    KOSTEK B., Intelligent Analysis of Musical Databases,Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 300305, Tokyo, 1996.Google Scholar
  120. [120]
    KOSTEK B., Rough Set and Fuzzy Set Methods Applied to Acoustical Analyses,J. Tntell. Automation and Soft Computing - Autosoft, Vol. 2, No. 2, pp. 147–158,1996.Google Scholar
  121. [121]
    KOSTEK B., Articulation Related Features in the Pipe Organ Sound,Archives of Acoustics, Vol. 22, No. 2, pp. 219–244,1997.Google Scholar
  122. [122]
    KOSTEK B., KRÓLIKOWSKI R., Application of Neural Networks to the Recognition of Musical Sounds, Archives of Acoustics, Vol. 22, No. 1, pp. 27–50, 1997.Google Scholar
  123. [123]
    KOSTEK B., KRÓLIKOWSKI R., Artificial Neural Network as a Classifier of Musical Instrument Sounds, Proc. EUFIT’97, Aachen, pp. 485–489, 1997.Google Scholar
  124. [124]
    KOSTEK B., Soft Set Approach to the Subjective Assessment of Sound Quality,Proc. InterSymp’97, Baden-Baden, Advances in Artificial Intelligence and Engineering Cybernetics, Vol. IV, pp. 107–111,1997.Google Scholar
  125. [125]
    KOSTEK B., Sound Quality Assessment Based on the Rough Set Classifier,Proc. EUFIT’97, pp. 193–195, Aachen, 1997.Google Scholar
  126. [126]
    KOSTEK B., SZCZERBA M., CZYZEWSKI A., Rough Set Based Analysis of Computer Musical Storage, Proc. ICCIMA’97, pp. 140–144, Brisbane, Australia, 1997.Google Scholar
  127. [127]
    KOSTEK B., SZCZERBA M., Application of Algorithms Dealing with Time Domain Uncertainty for the Automatic Recognition of Musical Phrases, 102nd Convention AES, Preprint No. 4502, Munich, 1997.Google Scholar
  128. [128]
    KOSTEK B., WIECZORKOWSKA A., A System for Musical Sound Parameter Database Creation and Analysis, 102nd Convention AES, Preprint No. 4498 ( N3 ), Munich, 1997.Google Scholar
  129. [129]
    KOSTEK B., WIECZORKOWSKA A., Parametric Representation of Musical Sounds, Archives ofAcoustics, Vol. 22, No. 1, pp. 2–26, 1997.Google Scholar
  130. [130]
    KOSTEK B., Computer-Based Recognition of Musical Phrases Using the Rough-Set Approach, J. Information Sciences, Vol. 104, pp. 15–30,1998.Google Scholar
  131. [131]
    KOSTEK B., Soft Set Approach to the Subjective Assessment of Sound Quality, FUZZ-IEEE’98 (World Congress on Computational Intelligence), pp. 669–674, Anchorage, Alaska, U.S.A., May 1998.Google Scholar
  132. [132]
    KOSTEK B., Automatic Recognition of Sounds of Musical Instruments: An Expert Media Application, World Automation Congress, WAC’98, IFMIP-053, Anchorage, Alaska, U.S.A., May 1998.Google Scholar
  133. [133]
    KOSTEK B., Soft Computing-Based Recognition of Musical Sounds,chapter in Rough Sets in Data Mining and Knowledge Discovery I/II,POLKOWSKI L., SKOWRON A. (Eds.), Physica-Verlag (Springer-Verlag), Chapter 11, pp. 193–213, 1998.Google Scholar
  134. [134]
    KOSTEK B. Assessment of Concert Hall Acoustics Using Rough Set and Fuzzy Set Approachchapter in Rough-Fuzzy Hybridization: A New Trend in Decision MakingPAL S.K., SKOWRON A. (Eds.), Springer-Verlag, Singapore 1998 (in print).Google Scholar
  135. [135]
    KRIMPHOFF J., McADAMS S., WINSBERG S., Caracterisation du Timbre des Sons Complexes. II. Analyses acoustiques et quantification psychophysique, J. de Physique IV, Vol. 4, pp. 625–628, 1994.CrossRefGoogle Scholar
  136. [136]
    KRÒLIKOWSKI R., B. KOSTEK B., Recognition of Musical Instruments Based on Neural Networks, Proc. 3rd Conf. on Neural Networks and Their Applications, pp. 195–200, Kule, Poland, 1997.Google Scholar
  137. [137]
    KRUSKAL J.B., Multidimesional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis, Psychometrika, Vol. 29, No. 1, pp. 1–27, 1964.MathSciNetMATHCrossRefGoogle Scholar
  138. [138]
    KRAMER P.S., Mean Free Path Length for Radiating Point Sources in Specular Reflecting Enclosures, Acta Acustica, Vol. 83, No. 4, pp. 629–634, 1997.Google Scholar
  139. [139]
    KU’I RUFF H., Energetic Sound Propagation in Rooms,Acta Acustica, Vol. 83, No. 4, pp. 622–628,1997.Google Scholar
  140. [140]
    LAMORAL R., Point actuel de l’acoustique des salles, Revue d’Acoustique, No. 26, pp. 190–191, 1973.Google Scholar
  141. [141]
    LEHMAN P., WILKENS H., Zusammenhang Subjectiver Beurteilungen von Konzertsalen mit Raumakustichen Kriterien, Acustica, Vol. 15, pp. 226–268, 1980.Google Scholar
  142. [142]
    LEACH J., FITCH J.: Nature, Music, and Algorithmic Composition, Computer Music Journal, Vol. 19, No. 2, 1995.Google Scholar
  143. [143]
    LENARCIK A., PIASTA Z., Deterministic Rough Classifiers, in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.SA., pp. 434–441, 1994.Google Scholar
  144. [144]
    LEONARTIES I.J., BILLINGS S.A., Input-Output Parametric Models for Non-Linear Systems Part II: Stochastic Non-Linear Systems, hit. J. Control, Vol. 41, No. 2, pp. 329–344, 1985.MathSciNetCrossRefGoogle Scholar
  145. [145]
    LOY1i’RMOSER W., Acoustical Design of Modern German Organs,J. Acoust. Soc. Amer., Vol. 29, No. 6, pp. 682–689,1957.Google Scholar
  146. [146]
    LITOWSKI T., Auditory Evaluation of Acoustic Devices, Music Academy of Warsaw, Warsaw, 1984.Google Scholar
  147. [147]
    MAGOULAS G., VRAHATIS M., ANDROULAKIS G., Effective Backpropagation Training with Variable Stepsize, Neural Networks, Vol. 10, No. 1, pp. 69–82, January 1997.CrossRefGoogle Scholar
  148. [148]
    MALLAT S., Zero-Crossings of a Wavelet Transform, IEEE Trans. on Information Theory, Vol. 37, No 4, pp. 1019–1033, July 1991.MathSciNetCrossRefGoogle Scholar
  149. [149]
    MALLOCH S.N., CAMPBELL A.M., An investigation of musical timbre, J. de Physique IV, Vol. 4, pp. 589–592, 1994.Google Scholar
  150. [150]
    MARPLE Jr. S.L., Digital Spectral Analysis: with Applications, Englewood Cliffs, New Jersey, 1987.Google Scholar
  151. [151]
    McAULAY R.J., QUATIERI T.F., Speech Analysis/Synthesis Based on a Sinusoidal Representation, IEEE Trans. Acoust, Speech, Signal Processing, Vol. ASSP-34, pp. 744–754, 1986.Google Scholar
  152. [152]
    McINTYRE M.E., SCHUMACHER R.T.,WOODHOUSE J., On the Oscillation of Musical Instruments, J. Acoust. Soc. Amer., Vol. 74, No. 5, pp. 1325–1345, 1983.ADSCrossRefGoogle Scholar
  153. [153]
    MEYER J., The Sound of the Orchestra, J. Audio Eng Soc., Vol. 41, No. 4, pp. 203212, 1993.Google Scholar
  154. [154]
    MEYER Y., Wavelets and Applications, Springer-Verlag, Paris 1992.Google Scholar
  155. [155]
    MONRO G., Fractal Interpolation Waveforms,Comp. Music Journal, Vol. 19, No. 1, pp. 88–98,1995.Google Scholar
  156. [156]
    MORANDO M., MUSELLI M., GUARIANO M., Musical Rhythm Recognition with Neural Networks, Proc. LASTED, Artificial Intelligence, Expert Systems, and Neural Networks, pp. 229–232, Honolulu, Hawaii, U.S.A., 1996.Google Scholar
  157. [157]
    MOURJOPOULOS J., TSOUKALAS D., Neural Network Mapping to Subjective Spectra of Music Sounds, 90th J. Audio Eng. Soc. Cony., Preprint No. 3064, Paris 1991, J. Audio Eng. Soc. (Abstr), Vol. 39, 5, (1991).Google Scholar
  158. [158]
    NOLLE A.W., FINCH T.L., Starting Transients of Flue Organ Pipes in Relation to Pressure Rise Time, J. Acoust Soc. Amer., Vol. 91, No. 4, pp. 2190–2202, 1992.ADSCrossRefGoogle Scholar
  159. [159]
    OMEN W., BONT F., KERKHOF L., Variable Bit Rate Coding for MPEG - 1 Audio, Layers I and II, 98thAES Convention, Preprint No. 3938, Paris, 1995.Google Scholar
  160. [160]
    ORR R.S., The Order of Computation of Finite Discrete Gabor Transforms,IEEE Trans. Signal Processing, Vol. 41, No 1, pp. 122–130,1993.Google Scholar
  161. [161]
    PAWLAK Z., Rough Sets,J. Computer and Information Science, Vol. 11, No. 5, pp. 341–356,1982.Google Scholar
  162. [162]
    PAWLAK Z., Data versus Logic - A Rough Set View,Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 1–8, Tokyo, 1996.Google Scholar
  163. [163]
    PAWLAK Z., Reasoning about Data - A Rough Set Perspective, Lecture Notes in Artificial Intelligence No. 1424, in Rough Sets and Current Trends in Computing, (POLKOWSKI L., SKOWRON A., Eds.), Proc. RSCTC’98, pp. 25–34, Springer-Verlag, Heidelberg and New York 1998.Google Scholar
  164. [164]
    PIEZO FILM SENSORS TECHNICAL MANUAL, AMP Inc. Piezo Film Sensors, Basic Design Kit, U.S.A., 1993.Google Scholar
  165. [165]
    POLLARD H.F., Time Delay Effects in the Operation of a Pipe Organ, Acustica, Vol. 20, No. 4, pp. 189–199,1968.Google Scholar
  166. [166]
    POLLARD H.F., JANSSON E.V., A Tristimulus Method for the Specification of Musical Timbre, Acustica, Vol. 51, 162–171, 1982.Google Scholar
  167. [167]
    POLKOWSKI L., SKOWRON A. (Eds.), Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence, Springer-Verlag, Heidelberg and New York 1998.MATHGoogle Scholar
  168. [168]
    POLKOWSKI L., SKOWRON A. (Eds.), Rough Sets in Knowledge Discovery 1: Methodology and Applications, Physica-Verlag, Heidelberg and New York 1998.MATHGoogle Scholar
  169. [169]
    POLKOWSKI L., SKOWRON A. (Eds.), Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, Physica-Verlag ( Springer-Verlag ), Heidelberg and New York 1998.Google Scholar
  170. [170]
    POWELL A., On the Edgetone,J. Acoust. Soc. Amer., Vol. 33, No. 4, pp. 395–409, 1961.Google Scholar
  171. [171]
    PRATT R.L., DOAK P.E., A Subjective Rating Scale for Timbre, J. Sound and Vibration, Vol. 45, No. 3, pp. 317–328, 1976.ADSCrossRefGoogle Scholar
  172. [172]
    PRESS W.H., FLANNERY B.P., TEUKOLSKY S.A., VE’FIERLING, Numerical Recipes, Cambridge University Press, 1986.Google Scholar
  173. [173]
    PULACZEWSKI J., SZACKA K., MANITIUS A., Theory of Automation, PWN, Warsaw, 1974 (in Polish).Google Scholar
  174. [174]
    QUTAN S., CHEN D., Discrete Gabor Transform, IEEE Trans. on Signal Processing, Vol. 41, No. 7, pp. 2429–2438, 1993.ADSCrossRefGoogle Scholar
  175. [175]
    RABINER L.R, ROSENBERG A.E, LEVINSON S.E., Considerations in Dynamic Time Warping Algorithms for Discrete Word Recognition, IEEE Trans. on Acoustics, S.eech, and Signal processing, Vol. ASSP-26, No. 6, 1978.Google Scholar
  176. [176]
    RABINER L.R, SCHAFER R.W., Digital Processing of Speech Signals, Englewood Cliffs, Prentice Hall, 1978.Google Scholar
  177. [177]
    RAKOWSKI A., RICHARDSON E.G., Eine Analyse des Intonierungsvorganges bei Orgeln, Gravesaner Blätter, Vol. 15, No. 16, pp. 46–58, 1960.Google Scholar
  178. [178]
    REICHARDT W., ALIM A.O., SCHMIDT W., Definition und Messgrundlage eines objektiven Masses zur Ermittlung der Grenze zwischen brauchbarer und unbrauchbarer Durchsichtigkeit bei Musikdarbietung, Acustica, Vol. 32, pp. 126137, 1975.Google Scholar
  179. [179]
    RHEE H-S., OH K-W., Unsupervised Neural Network for Fuzzy Clustering, Proc. EUFIT’96, Vol. 2, pp. 715–719, Aachen, 1996.Google Scholar
  180. [180]
    ROEDERER J.G., Introduction to the Physics and Psychophysics of Music,Springer-Verlag, Vol. 16, New York and Heidelberg 1979.Google Scholar
  181. [181]
    SANDELL G.J., SHARC - Sandell Harmonic Archive, Database of Musical Timbre Information (unpublished material), 1994.Google Scholar
  182. [182]
    SANDELL G.J., MARTENS W.M., Perceptual Evaluation ofPrincipal-ComponentBased Synthesis of Musical Timbres, J. Audio Eng. Soc., Vol. 43, No. 12, pp. 10131028, 1995.Google Scholar
  183. [183]
    SCHROEDER M.R., GOTTLOB D., SIEBRASSE K.F., Comparative Study of European Concert Halls, Correlation of Subjective Preference with Geometric and Acoustic Parameters, J. Acoust. Soc. Amer., Vol. 56, No. 4, pp. 1195–1201, 1974.ADSCrossRefGoogle Scholar
  184. [184]
    SCHROEDER M.R., Natural Sounding of Artificial Reverberation,J. Audio Eng. Soc., Vol. 10, No. 3, pp. 219–223,1962.Google Scholar
  185. [185]
    SCHROEDER M.R., Self-Similarity and Fractals in Science and Art,J. Audio Eng Soc., Vol. 37, No. 10,1989.Google Scholar
  186. [186]
    SCHUMACHER R.T., Self-Sustained Oscillations of Organ Flue Pipes: An Integral Equation Solution,Acustica, Vol. 39, pp. 225–238,1978.Google Scholar
  187. [187]
    SHLIEN S., SOULODRE G., Measuring the Characteristics of Expert Listeners, 101st Audio Eng. Soc. Cony., Preprint No. 4339, Los Angeles, U.S.A., 1996.Google Scholar
  188. [188]
    SKOWRON A., Data Filtration: a Rough Set Approach,in Rough Sets, Fuzzy Sets and Knowledge Discovery, (ZIARKO W.P., Ed.), Springer-Verlag, pp. 108–118, London 1994.Google Scholar
  189. [189]
    SKOWRON A., Decision Rules Based on Discernibility Matrices and Decision Matrices,in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 69,1994.Google Scholar
  190. [190]
    SKOWRON A., NGUYEN S.H., Quantization of Real Value Attributes: Rough Set and Boolean Reasoning Approach, ICS Research Report 11/95, Warsaw, 1995.Google Scholar
  191. [191]
    SLOWINSKI R., STEFANOWSKI J., SUSUMAGA R., Rough Set Analysis of Attribute Dependencies in Technical Databases, Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 284–291, Tokyo, 1996.Google Scholar
  192. [192]
    SLOWINSKI R., Rough Set Processing of Fuzzy Information,in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 142–145,1994.Google Scholar
  193. [193]
    SMITH III J.O., Physical Modeling Using Digital Waveguides,Computer Music Journal, special issue on Physical Modeling of Musical Instruments, Part I, Vol. 16, No. 4, pp. 79–91,1992.Google Scholar
  194. [194]
    SMITH M., SMAILL A. WIGGINS GA. (Eds.), Music Education: An Artificial Intelligence Approach, Workshops in Computing, Springer-Verlag, Edinburgh 1993.Google Scholar
  195. [195]
    SPORER TH., Objective Audio Signal Evaluation Applied Psychoacoustics for Modeling the Perceived Quality of Digital Audio,103rd Audio Eng. Soc. Cony., Preprint No. 4512, New York, 1997.Google Scholar
  196. [196]
    STEENEKEN H.J.M., HOUTGAST T., A Physical Method for Measuring Speech Transmission Quality, J. Acoust. Soc. Amer., Vol. 67, No. 1, pp. 318–326, 1980.ADSCrossRefGoogle Scholar
  197. [197]
    STOLL G., A Perceptual Coding Technique Offering the Best Compromise between Quality, Bit-Rate and Complexity for DSB,94th AES Convention, Preprint No. 3458, Berlin, 1993.Google Scholar
  198. [198]
    SUGENO M., An Introductory Survey of Fuzzy Control,Information Sciences, Vol. 36, pp. 59–83, 1985.Google Scholar
  199. [199]
    TADEUSIEWICZ R. Speech SignalWKiL, Warsaw 1988 (in Polish).Google Scholar
  200. [200]
    TADEUSIEWICZ R. Neural NetsAcademic Printing Office RM, Warsaw 1993 (in Polish).Google Scholar
  201. [201]
    TANGUTANE A.S., Artificial Perception and Music Recognition, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin 1993.Google Scholar
  202. [202]
    THE NEW GROVE DICTIONARY OF MUSIC AND MUSICIANS edited by S. Sadie, Macmillan Publishers, London, Washington, Hong Kong, 1980.Google Scholar
  203. [203]
    THIELE R., Richtungsverteilung und Zeitfolge der Schallrueckwurfe in Raumen, Acustica, Vol. 3, pp. 291–302, 1953.Google Scholar
  204. [204]
    TSUMOTO S., YAO Y.Y., HADJIlvIICHAEL M. (Eds.), Bulletin of International Rough Set Society, Vol. 2, No. 1, June 1998.Google Scholar
  205. [205]
    UEMATSU H., OZAWA K., SUZUKI Y., SONE T., A Consideration on the Timbre of Complex Tones Only Consisting of Higher Harmonics, Proc. 15th Intern. Congress on Acoustics, T.ondheim, Norway, pp. 509–512, 1995.Google Scholar
  206. [206]
    VÄLIMAKI V., KARJALAINEN M., JANOSY Z., LAINE U.K., A Real-Time DSP Implementation of a Flute Model, Proc. hit. Conf. Acoustics, Speech and Signal Processing (ICASSP’92), San Francisco, 1992.Google Scholar
  207. [207]
    VÄLIMÄKI V., HUOPANIEMI J., KARJALAINEN M., JANOSY Z., Physical Modeling of Plucked String Instruments with Application to Real-Time Sound Synthesis, 98th Audio Eng. Soc. Cony., Preprint No. 3956, Paris, 1995, J. Audio Eng. Soc. (Abstr), Vol. 41, No. 5, 1995.Google Scholar
  208. [208]
    Wavelets - Theory, Algorithms and Applications, CHUI Ch.K., MONTEFUSCO L., PUCCO L. (Eds.), Academic Press, Inc., San Diego 1994.Google Scholar
  209. [209]
    VERGE M.P., CAUSSE R., FABRE B., HIRSCHBERG A., WUNANDS A.P.J., VAN STEENBERGEN A., Jet Oscillations and Jet Drive in Recorder-Like Instruments, ActaAcustica, Vol. 2, No. 5, pp. 403–419, 1994.Google Scholar
  210. [210]
    VERGE M.P., FABRE B., MAHU W.E.A., HIRSCHBERG A., Jet Formation and Jet Velocity Fluctuations in a Flue Organ Pipe, J. A.oust. Soc. Amer., Vol. 95, No. 2, pp. 1119–1132, 1994.ADSCrossRefGoogle Scholar
  211. [211]
    WESTHEAD M.D., SMAILL A., Automatic Characterisation of Musical Style, in Music Education: An Artificial Intelligence Approach, SMITH M., SMAILL A. WIGGINS G.A. (Eds.), Workshops in Computing, pp. 157–170, Springer-Verlag, Edinburgh 1993.Google Scholar
  212. [212]
    WIDMANN U., Three Application Examples for Sound Quality Design Using Psychoacoustic Tools,Acustica, Vol. 83, No. 5, pp. 819–826,1997.Google Scholar
  213. [213]
    WIDMER G., Modeling the Rational Basis of Musical Expression,Computer Music Journal, Vol. 19, No. 2, pp. 76–96,1995.Google Scholar
  214. [214]
    WILSON R., CALWAY A. D., PEARSON E. R. S., A Generalized Wavelet Transform for Fourier Analysis, the Multiresolution Fourier Transform and its Application to Image and Audio Signal Analysis, IEEE Trans. on Information Theory, Vol. 38, No 2, pp. 674–690, March 1992.MathSciNetMATHCrossRefGoogle Scholar
  215. [215]
    YAGER R.R., KACPRZYK J., FEDRIZZI M. (Eds.), Advances in the Dempster-Shafer Theory and Evidence, Wiley, New York, 1994.Google Scholar
  216. [216]
    YAMAGUCHI K., Multivariate Analysis of Subjective and Physical Measures of Hall Acoustics,J. Acoust. Soc. Amer., Vol. 52, No. 5, pp. 1271–1279, 1972.Google Scholar
  217. [217]
    YAMAKAWA T., Stabilization of an Inverted Pendulum by a High-Speed Fuzzy Logic Controller Hardware System,Fuzzy Sets and Systems, Vol. 32, pp. 161–180, 1989.Google Scholar
  218. [218]
    ZADEH L., Fuzzy Sets,Information and Control, Vol. 8, pp. 338–353, 1965.Google Scholar
  219. [219]
    ZADEH L., KACPRZYK J. (Eds.), Fuzzy Logic for the Management of Uncertainty, Wiley, New York, 1992.Google Scholar
  220. [220]
    ZADEH L., KACPRZYK J. (Eds.), Computing with Words in Information/ Intelligent Systems, Physica-Verlag (Springer-Verlag), Heidelberg and New York 1999.Google Scholar
  221. [221]
    ZEMANKOWA M., KACPRZYK J., (Guest eds.), Integrating Artificial Intelligence and Databases Technologies, Special Issue of J. of Intelligent Information Systems, Vol. 2, No. 4, 1993.Google Scholar
  222. [222]
    ZIARKO W. (Ed), Rough Sets, Fuzzy Sets, and Knowledge Discovery, Springer-Verlag, London 1994.Google Scholar
  223. [223]
    ZIARKO W., Analysis of Uncertain Information in the Framework of Variable Precision Rough Sets,Foundations of Computing and Decision Sciences, Vol. 18, No. 3–4, pp. 381–396, Poznan,1993.Google Scholar
  224. [224]
    ZIARKO W., Review of Basics of Rough Sets in the Context of Data Mining,Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 447–457, Tokyo,1996.Google Scholar
  225. [225]
    ZWICKER E., ZWICKER T., Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, the Human Auditory System, J. Audio Eng. Soc., Vol. 39, No. 3, pp. 115–126, March 1991.MathSciNetGoogle Scholar
  226. [226]
    ZURADA J., Introduction to Artificial Neural Systems, West Publishing Comp., St. Paul 1992.Google Scholar
  227. [227]
    ZURADA J., MALINOWSKI A., Multilayer Perceptron Networks: Selected Aspects of Training Optimization, Applied Mathematics and Comp. Science, Vol. 4, No. 3, pp. 281–307, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Boz̊ena Kostek
    • 1
  1. 1.Sound Engineering Department, Faculty of Electronics, Telecommunications & InformaticsTechnical University of GdańskGdańskPoland

Personalised recommendations