Semiotics and Computational Linguistics

On Semiotic Cognitive Information Processing
  • Burghard B. Rieger
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 33)


Signs, which are the domain of inquiry in semiotics, have a complex ontology. Apart from being used—adequate knowledge provided—by communicators, and recognized as being decomposable into smaller elements and aggregatable to larger structures, they are also meant to be understood. This is a consequence of their manifold identity as compound physical objects with real world extensions in space-time-locations and as activators for complex mental processes which tend to be identified with some mind and/or brain activities responsible for their understanding. In the cognitive sciences all processes of perception, identification, and interpretation of (external) structures are considered information processing which (natural or artificial) systems—due to their own (internal) structuredness or knowledge—are able (or unable) to perform. Combining the semiotic with the cognitive paradigm in computational linguistics, the processes believed to constitute natural language sign structures and their understanding is modeled by way of procedural, i.e. computational (re-)constructions of such processes that produce structures comparable to those that the understanding of (very large) samples of situated natural language discourse would imply. Thus, computational semiotic models in cognitive linguistics aim at simulating the constitution of meanings and the interpretation of signs without their predicative and propositional representations which dominate traditional research formats in syntax and semantics so far. This is achieved by analyzing the linear or syntagmatic and selective or paradigmatic constraints which natural languages impose recursively on the formation and structure of (strings of) linguistic entities on different levels of systemic distinction. It will be argued (and illustrated) that fuzzy modeling allows to derive more adequate representational means whose (numerical) specificity and (procedural) definiteness may complement formats of categorial type precision (which would appear phenomenologically incompatible) and processual determinateness (which would seem cognitively inadequate). Several examples from fuzzy linguistic research will be given to illustrate these points.


Natural Language Minimal Span Tree Computational Linguistic Semantic Space Statistical Machine Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Armstrong-Warwick (ed): Using Large Corpora I & II. Special Issues: Computational Linguistics, 19:1 & 2. MIT Press for ACL, Boston, MA, 1993.Google Scholar
  2. [2]
    J. Barwise/ J. Perry: Situations and Attitudes. MIT Press, Cambridge, MA, 1983.Google Scholar
  3. [3]
    T. Briscoe/ J. Carroll: Generalized Probabilstic LR Parsing of Natural Language (Corpora) with Unification-Based Grammars. Computational Linguistics, 1993 (1): 25–59, 1993.Google Scholar
  4. [4]
    P. Brown/ S. DellaPietra/ V. DellaPietra/ R. Mercer: The Mathematics of Statistical Machine Translation: Parameter Eestimation. Computational Linguistics, 1993(2):263–311.Google Scholar
  5. [5]
    P. E. Brown: A statistical approach to language translation. In: D. Vargha (ed): COLING-88 Budapest, ICCL, J.v.Neumann Society of Computing Science. Budapest 1988, pp. 71–76.Google Scholar
  6. [6]
    H. Bunke (ed): Advances in Structural and Syntactic Pattern Recognition. World Scientific, Singapore, 1992.Google Scholar
  7. [7]
    G. A. Carpenter/ S. Grossberg (eds): Pattern Recognition by Self- Organizing Neural Networks. MIT Press, Cambridge, MA, 1991.Google Scholar
  8. [8]
    N. Chomsky: Language and Problems of Knowledge. The Managua Lectures. (Current Studies in Linguistics 16 ). MIT Press, Cambridge, MA, 1988.Google Scholar
  9. [9]
    N. Chomsky: The Minimalist Program. (Current Studies in Linguistics 28 ). MIT Press, Cambridge, MA, 1995.MATHGoogle Scholar
  10. [10]
    K. Church: A stochastic parts program and noun phrase parser for unrestricted text. In: Second Conference on Applied Natural Language Processing, ACL, Austin, TX, 1988, pp. 136–143.CrossRefGoogle Scholar
  11. [11]
    K. W. Church/ P. Hanks: Word association norms, mutual information, and lexicography. Computational Linguistics,1990(1):22–29.Google Scholar
  12. [12]
    K. W. Church/ R. L. Mercer: Introduction to the Special Issue on Computational Linguistics Using Large Corpora. Computational Linguistics,1993(1):1–24.Google Scholar
  13. [13]
    J. Fodor/ Z. Pylyshyn: Connectionism and cognitive architecture: A critical analysis. Cognition,1988(28):3–71.Google Scholar
  14. [14]
    W. Fucks: On Nahordnung and Fernordnung in samples of literary texts. Biometrica,1954(2):116–132.Google Scholar
  15. [15]
    D. Hindle/ M. Rooth: Structural Ambiguity and Lexical Relations. Computational Linguistics,1993(1):103–120.Google Scholar
  16. [16]
    G. Hinton (ed): Connectionist Symbol Processing. MIT Press, Cambridge, MA, 1992.Google Scholar
  17. [17]
    R. Köhler/ B. Rieger (eds): Contributions to Quantitative Linguistics. Proceedings 1st Quantitative Linguistics Conference — QUALICO-91. Kluwer Academic Publishers, Dordrecht, 1993.Google Scholar
  18. [18]
    R. Lorch: Priming and search processes in semantic memory: a test of three models of spreading activation. Journal of Verbal Learning and Verbal Behavior,1982(21):468–492.Google Scholar
  19. [19]
    A. Meystel: Semiotic Modeling and Situation Analysis: an Introduction. AdRem Inc, Bala Cynwyd, PA, 1995.Google Scholar
  20. [20]
    L. Nadel/ L. Cooper/ P. Culicover/ R. Harnish (eds): Neural Connections, Mental Computation. MIT Press, Cambridge, MA, 1989.Google Scholar
  21. [21]
    C. S. Peirce: Pragmatism in Retrospect: A Last Formulation. In: J. Buchler (ed): The Philosophical Writings of Peirce, Dover, New York, 1906, pp. 269–289.Google Scholar
  22. [22]
    R. Pfeiffer/ Z. Schreter/ F. Fogelman-Soulié/ L. Steels (eds): Connection-ism in Perspective. North Holland, Amsterdam, 1989.Google Scholar
  23. [23]
    C. Prim: Shortest connection networks and some generalizations. Bell Systems Technical Journal,1957(36):1389–1401.Google Scholar
  24. [24]
    B. Rieger: Theoretische Grundlagen der Computerlinguistik: eine Paneldiskussion mit M. Bierwisch, C. Habel, B. Rieger, H. Uszkoreit und W. Wahlster. In: I. Batori/ U. Hahn/ M. Pinkal/ W. Wahlster (eds): Computerlinguistik und ihre theoretischen Grundlagen, (KI—InformatikFachberichte Bd. 195 ). Springer, Berlin/ Heidelberg/ NewYork, 1988, pp. 192–218.Google Scholar
  25. [25]
    B. Rieger: Unscharfe Semantik: zur numerischen Modellierung vager Bedeutungen von Wörtern als fuzzy Mengen. In: H. Friemel/ G. MüllerSchönberger/ A. Schutt (eds): Forum-90: Wissenschaft und Technik. Neue Anwendungen mit Hilfe aktueller Computertechnologien, (Informatik-Fachberichte Bd. 259 ). Springer, Berlin/ Heidelberg/ NewYork, 1990, pp. 80–104.Google Scholar
  26. [26]
    B. Rieger: Fuzzy Modellierung linguistischer Kategorien. In: W. Feldmann/ H. Hinrichs (eds): Text und Lexikon, (Lexicographica Series Maior 73 ). Niemeyer, Tübingen, 1996, pp. 155–169.Google Scholar
  27. [27]
    B. Rieger: Warum Fuzzy Linguistik? Überlegungen und Ansätze einer cornputerlinguistischen Neuorientierung. In: D. Krallmann/ W. Schmitz (eds): Internationales Gerold-Ungeheuer-Symposium, Nodus Verlag, Münster, 1998, pp. 153–18.Google Scholar
  28. [28]
    B. B. Rieger: Feasible Fuzzy Semantics. On some problems of how to handle word meaning empirically. In: H. Eikmeyer/ H. Rieser (eds): Words, Worlds, and Contexts. New Approaches in Word Semantics, (Research in Text Theory 6). de Gruyter, Berlin/ NewYork, 1981, pp. 193–209.Google Scholar
  29. [29]
    B. B. Rieger: Fuzzy Representation Systems in Linguistic Semantics. In: R. Trappl/ N. Findler/ W. Horn (eds): Progress in Cybernetics and Systems Research, Vol. XI. McGraw-Hill Intern., Washington/ New York/ London, 1982, pp. 249–256Google Scholar
  30. [30]
    B. B. Rieger: Clusters in Semantic Space. In: L. Delatte (ed): Actes du Congrès International Informatique et Science Humaines. Laboratoire d’Analyse Statistique des Langues Anciennes, LASLA, Liège, 1983, pp. 805–814.Google Scholar
  31. [31]
    B. B. Rieger: Generating Dependency Structures of Fuzzy Word Meanings in Semantic Space. In: S. Hattori/ K. Iounu (eds): Proceedings of the XIIIth International Congress of Linguists. Comité International Permanent des Linguistes, CIPL. Tokyo, 1983, pp. 543–548.Google Scholar
  32. [32]
    B. B. Rieger: Semantic Relevance and Aspect Dependancy in a Given Subject Domain. In: D. Walker (ed): COLING-84 10th International Conference on Computational Linguistics, International Committee of Computational Linguistics, ACL-ICCL. Stanford, 1984, pp. 298–301.CrossRefGoogle Scholar
  33. [33]
    B. B. Rieger: Inducing a Relevance Relation in a Distance-like Data Structure of Fuzzy Word Meaning Representations. In: R. Allen (ed): Data Bases in the Humanities and Social Sciences. 4th International Conference on Data Bases in the Humanities and Social Sciences, Paradigm Press, Osprey, FL, 1985, pp. 374–386.Google Scholar
  34. [34]
    B. B. Rieger: Lexical Relevance and Semantic Disposition. On stereotype word meaning representation in procedural semantics. In: G. Hoppenbrouwes/ P. Seuren/ T. Weijters (eds): Meaning and the Lexicon. Foris Publications, Dordrecht, 1985, pp. 387–400.Google Scholar
  35. [35]
    B. B. Rieger: Distributed Semantic Representation of Word Meanings. In: J. D. Becker/ I. Eisele/ F. W. Mündemann (eds): Parallelism, Learning, Evolution. Evolutionary Models and Strategies, WOPPLOT-89, (Lecture Notes in Artificial Intelligence 565 ). Springer, Berlin/ Heidelberg/ New York, 1991, pp. 243–273.CrossRefGoogle Scholar
  36. [36]
    B. B. Rieger: On Distributed Representation in Word Semantics. (ICSITechnical Report TR-91–012), International Computer Science Institute. Berkeley, CA, 1991.Google Scholar
  37. [37]
    B. B. Rieger: Meaning Acquisition by SCIPS. In: B. M. Ayyub (ed): ISUMA-NAFIPS-95, IEEE-Transactions: Joint Intern. Conf. on Uncertainty Modeling and Analysis, North American Fuzzy Information Processing Society. IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 390–395.Google Scholar
  38. [38]
    B. B. Rieger: Situations, Language Games, and SCIPS. Modeling semiotic cognitive information processing systems. In: A. Meystel/ N. Nerode (eds): Architectures for Semiotic Modeling and Situation Analysis in Large Complex Systems, 10th IEEE Symposium on Intelligent Control. AdRem, Bala Cynwyd, PA, 1995, pp. 130–138.Google Scholar
  39. [39]
    B. B. Rieger: Situation Semantics and Computational Linguistics: towards Informational Ecology. A semiotic perspective for cognitive information processing systems. In: K. Kornwachs/ K. Jacoby (eds): Information. New Questions to a Multidisciplinary Concept. Akademie Verlag, Berlin, 1996, pp. 285–315.Google Scholar
  40. [40]
    B. B. Rieger: Computational Semiotics and Fuzzy Linguistics. On meaning constitution and soft categories. In: A. Meystel (ed): A Learning Perspective: Proceedings of the 1997 International Conference on Intelligent Systems and Semiotics (ISAS-97), (NIST Special Publ. 918 ). US Gov. Printing Office, Washington, DC, 1997, pp. 541–551.Google Scholar
  41. [41]
    B. B. Rieger/ C. Thiopoulos: Semiotic Dynamics: a self-organizing lexical system in hypertext. In: R. Köhler/ B. B. Rieger (eds): Contributions to Quantitative Linguistics. Proceedings of the 1st Quantitative Linguistics Conference — QUALICO-91. Kluwer Academic Publishers, Dordrecht, 1993, pp. 67–78.CrossRefGoogle Scholar
  42. [42]
    H. Schnelle: Die Herausforderung des Konnektionismus in der kognitiven Linguistik. In: H. Friemel/ G. Müller-Schönberger/ A. Schutt (eds): Forum-90: Wissenschaft und Technik, (Informatik-Fachberichte 259 ). Springer, Berlin/ Heidelberg/ NewYork, 1990, pp. 42–58.CrossRefGoogle Scholar
  43. [43]
    H. Schnelle: Welcher Sprachwissenschaft auf der Spur? Plädoyer für größere Klarheit und Toleranz. Zeitschr.f.Sprachwissenschaft,1994(1):110–120.Google Scholar
  44. [44]
    P. Smolensky: On the proper treatment of connectionism. Behavioral and Brain Sciences,1988(11):1–74.Google Scholar
  45. [45]
    P. Smolensky: Connectionism and Constituent Structure. In: R. E. Pfeiffer (ed): Connectionism in Perspective. North Holland & Elsevier, Amsterdam/ NewYork, 1989, pp. 3–24.Google Scholar
  46. [46]
    F. Varela/ E. Thompson/ E. Rosch: The Embodied Mind. Cognitive Science and Human Experience. MIT Press, Cambridge, MA, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Burghard B. Rieger
    • 1
  1. 1.FB II: Department of Computational LinguisticsUniversity of TrierGermany

Personalised recommendations