Calculation over Verbal Quantities

  • Milan Mareš
  • Radko Mesiar
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 33)


Some verbal expressions represent quantitative data of essentially vague character and manipulation with them is frequently of computative type. This computation with words can be represented by fuzzy quantities. Nevertheless, each verbal quantitative expression is a combination of two components — of a quantitative one which connects it with some numerical (or quantitative) value, and of a semantic one which reflects its logical (or qualitative) features. The paper continues authors’ previous works in mathematical modelling of these two components and discussing their properties and interpretations.


Membership Function Fuzzy Number Logical Operation Shape Generator Verbal Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. DeBaets, M. Mares“, R. Mesiar: On the invariance of classes of shape generators. In: Proceedings of EUFIT’97. Verlag Mainz, Aachen 1997, Vol. 1, 10–14.Google Scholar
  2. 2.
    B. DeBaets, M. Marc* R. Mesiar: Fuzzy zeroes and indisguishability of real numbers. In: Proceedings of 5th Fuzzy Days–International Conference on Computational Intelligence. Dortmund 1997 (Ed.: B. Reutsch ). Springer Verlag, Berlin 1997, 299–303.Google Scholar
  3. 3.
    D. Dubois, H. Prade: Fuzzy numbers: an overview. In: J. Bezdek (Ed.): Analysis of Fuzzy Information. CRC-Press, Boca Raton 1987, Vol. I, 3–39.Google Scholar
  4. 4.
    J. Jacas, J. Recasens: Fuzzy numbers and equality relations. In: Proceedings of IEEE’93 on Fuzzy Systems, San Francisco 1993, 1298–1301.Google Scholar
  5. 5.
    A. Kaufmann, M.M. Gupta: Introduction to Fuzzy Arithmetics. Van Nostrand, New York 1985.Google Scholar
  6. 6.
    M. Mares: Computation Over Fuzzy Quantities. CRC-Press, Boca Raton 1994.MATHGoogle Scholar
  7. 7.
    M. Marc* R. Mesiar: Composition of shape generators. Acta Mathematica et Informatica Universitatis Ostraviensis. University of Ostrava 1996, 37–45.Google Scholar
  8. 8.
    M. Mares: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems, 1997, to appear.Google Scholar
  9. 9.
    M. Mares, R. Mesiar: Processing of sources of fuzzy quantities. In: Proceedings of IPMU’96, University of Granada 1996, Vol. I, 359–363.Google Scholar
  10. 10.
    M. Mares, R. Mesiar: Vagueness of verbal variable. In: Soft Computing of Financial Engineering (Eds.: J. Kacprzyk, R. Ribeiro, R.R. Yager, H.-J. Zimmermann) Physica Verlag, to appear.Google Scholar
  11. 11.
    Proceedings of International Panel Conference on Soft and Intelligent Computing, (Ed. J. Kóczy). Technical University of Budapest, Budapest 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Milan Mareš
    • 1
  • Radko Mesiar
    • 2
  1. 1.Institute of Information Theory and AutomationAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Faculty of Civil EngineeringSlovak Technical UniversityBratislavaSlovak Republic

Personalised recommendations