Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 33))

Abstract

The linguistic terms negation and complementation are usually used synonymously and often interchangeably in the literature for both crisp and fuzzy notations. In most cases, negation is used where complementation would be in order. We show that, although this collaboration of meanings may be acceptable in the crisp Boolean case, it is generally erroneous in the fuzzy case.

Fuzzy negation is introduced as a fuzzified functional (a fuzzy version) of the fuzzy complement. The properties of this innovative definition are investigated in both the classical and the fuzzy sense.

This work was done while on leave from the Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620 USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsina C., Trillas E., “On Splitting Triplets: Beyond Dual Connectives”, Proc. 4th IEEE International Conference on Fuzzy systems, vol. 3, pp. 1233–1238, 1995.

    Google Scholar 

  2. Alsina C., “As You Like Them: Connectives in Fuzzy Logic”, Proc. 26th International Symposium on Multiple-Valued Logic, pp. 2–7, 1996.

    Google Scholar 

  3. Bhutani K.R., Battou A., “An Application of Fuzzy Relations to Image Enhancement”, Pattern Recognition Letters, vol. 16, no. 9, pp. 901–909, 1995.

    Article  Google Scholar 

  4. Bier V.M., “Is Fuzzy Set Theory more General than Probability Theory?”, Proc. 1st International Symposium on Uncertainty, Modeling and Analysis, pp. 297–301, 1991.

    Google Scholar 

  5. Bilgic T., Turksen I.B., “Interval Valued Fuzzy Sets from Continuous Archimedean Triangular Norms”, Proc. 3rd IEEE Conference on Fuzzy Systems, vol. 2, pp. 1142–1147, 1994.

    Google Scholar 

  6. Bodjanova S., “Complement of Fuzzy K-Partitions”, Fuzzy Sets and Systems, vol. 62, no. 2, pp. 175–184, 1994.

    Article  MathSciNet  Google Scholar 

  7. Boldrin L., “A Substructural Connective for Possibilistic Logic”, Proc. European Conference (ECSQARU’95) on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 60–68, 1995.

    Google Scholar 

  8. Brubaker D.L., “Fuzzy Logic Works with Degrees of Truth”, Computer Design, vol. 30, no. 5, pp. 98–99, 1991.

    Google Scholar 

  9. Buehrer D.J., “From Interval Probability Theory to Computable Fuzzy First-Order Logic and Beyond”, Proc. 3rd IEEE Conference on Fuzzy Systems, vol. 2, pp. 1428–1433, 1994.

    Google Scholar 

  10. Cheng L., Hu M., “A General Fuzzy Logical Operator Set”, Proc. 20th International Symposium on Multiple-Valued Logic, pp. 279–283, 1990.

    Google Scholar 

  11. Collins Dictionary of the English Language, Collins, 1983.

    Google Scholar 

  12. Collins Cobuild English Dictionary, The University of Birmingham, Harper Collins Publishers, 1995.

    Google Scholar 

  13. Ferri E., Langholz G., “Neuro-Fuzzy Application to Natural Language Understanding”, Proc. International Conference on Intelligent Technologies in Human-Related Sciences, vol. 1, pp. 31–37, 1996.

    Google Scholar 

  14. Fodor J.C., “Fuzzy Connectives via Matrix Logic”, Fuzzy Sets and Systems, vol. 56, pp. 67–77, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fodor J.C., “A New Look at Fuzzy Connectives”, Fuzzy Sets and Systems, vol. 57, pp. 141–148, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fodor J.C., “Nilpotent Minimum and Related Connectives for Fuzzy Logic”, Proc. 4th IEEE International Conference on Fuzzy Systems, part 4, pp. 2077–2082, 1995.

    Google Scholar 

  17. Fodor J.C., “Contrapositive Symmetry of Fuzzy Implications”, Fuzzy Sets and Systems, vol. 69, no. 2, pp. 141–156, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gau W.L., Buehrer D.J., “Vague Sets”, IEEE Transactions on Systems, Man and Cybernetics, vol. 34, no. 2, pp. 610–614, 1993.

    Article  Google Scholar 

  19. Glorennec P.Y., “Neuro-Fuzzy Logic”, Proc. 5th IEEE International Conference on Fuzzy Systems, vol. 2, pp. 899–904, 1996.

    Google Scholar 

  20. Gottwald S., “Approximate Solutions of Fuzzy Relational Equations and a Characterization of T-Norms that Define Metrics for Fuzzy Sets”, Fuzzy Sets and Systems, vol. 75, no. 2, pp. 189–201, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hirota K., Ozawa K., “The Concept of Fuzzy Flip-Flop”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 10, no. 5, pp. 980–997, 1989.

    Article  MathSciNet  Google Scholar 

  22. Hirota K., “Fundamentals of Fuzzy Logical Circuits”, Proc. IJCAI’91 Workshop on Fuzzy Logic and Fuzzy Control, pp. 145–157, 1991.

    Google Scholar 

  23. Hirota K., “Fundamentals of Fuzzy Logic and Its Hardware Implementations”, Proc. 13th Brazilian Symposium on Artificial Intelligence (SBIA ’86), p. 231, 1996.

    Google Scholar 

  24. Iancu I., “T-Norms with Threshold”, Fuzzy Sets and Systems, vol. 85, pp. 83–92, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  25. Jong J.S.R., Sun C.T., Mizutani E., Neuro-Fuzzy and Soft Computing, Prentice Hall, 1997, pp. 21–24.

    Google Scholar 

  26. Jones T.I., “It’s a Fuzzy Future: How to Be a Little More Sure About Uncertainties”, 1995 Research Forum of the CFM (Centre for Facilities Management), University of Strathclyde, 1995.

    Google Scholar 

  27. Jumarie G., “A General Approach to Approximate Reasoning via Probability-Possibility Conversion”, Proc. 1993 International Conference on Systems, Man and Cybernetics, vol. 4, pp. 656–661, 1993.

    Google Scholar 

  28. Kandel A., “On Minimization of Fuzzy Functions”, IEEE Trans. On Computers, vol. C-22, no. 9., 1973, pp. 826–832.

    Google Scholar 

  29. Kandel A., “On the Properties of Fuzzy Switching Functions, J. of Cybernetics, vol. 4, no. 1, 1974, pp. 119–126.

    Google Scholar 

  30. Kandel A., “Fuzzy Expectation and Energy States in Fuzzy Media, Intr. J. for Fuzzy Sets and Systems, vol. 3, 8, no. 3, 1982, 1981, pp. 291–310.

    Google Scholar 

  31. Kandel A., Fuzzy Mathematical Techniques wuth Applications, Addison Wesley, 1987, 2nd printing.

    Google Scholar 

  32. Kaufmann A., Introduction to the Theory of Fuzzy Subsets, vol. 1, Academic Press, 1975, pp. 10, 335–6.

    Google Scholar 

  33. Klir J.K., Yuan B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, 1995, pp. 50–96.

    MATH  Google Scholar 

  34. Kosko B., Fuzzy Engineering, Prentice Hall, 1997, pp. 18–37.

    Google Scholar 

  35. Kovacevic D., “Fuzzy Logic Controller based on Standard Operational Amplifiers”, Fuzzy Logic Conference, pp. 231–244, 1996.

    Google Scholar 

  36. Liren L., “Fuzzy Solid Sets for Mathematical Morphology and Optical Implementations”, J. of the Optical Society of America A, vol. 12, no. 12, pp. 2636–2644, 1995.

    Article  Google Scholar 

  37. Ma M., Friedman M., Kandel A., “A New Approach for Defuzzification”, to appear.

    Google Scholar 

  38. Martin J.A., “Probability and Fuzzy Relational Semantic Systems in Propositional Approximate Reasoning”, Proc. 18th International Symposium on Multiple-Valued Logic, pp. 205–209, 1988.

    Google Scholar 

  39. Nguyen H.T., Kreinovich V., Lea B., Tolbert D., “How to Control if even Experts are not Sure”, Proc. 2nd International Workshop on Industrial Fuzzy Control and Intelligent Systems, pp. 153–162, 1992.

    Google Scholar 

  40. Nguyen H.T., Kreinovich V., “Classical-Logic Analogue of a Fuzzy `Paradox—, Proc. 5th IEEE International Conference on Fuzzy Systems, pp. 428–431, 1996.

    Google Scholar 

  41. Pedrycz W., Fuzzy Sets Engineering, CRC Press, 1995, pp. 290–297.

    Google Scholar 

  42. Prade H., “Modeles mathematiques de l’imprecis et de l’incertain en vue d’applications en raisonnement natural”, These d’Etat, University P. Sabatier, 1982.

    Google Scholar 

  43. Ross T.J., Fuzzy Logic with Engineering Applications, McGraw-Hill, 1995, pp. 20–27, 50–52, 198.

    Google Scholar 

  44. Schneider M., Shnaider E., Kandel A., “Applications of the Negation Operator in Fuzzy Production Rules”,Fuzzy Sets and Systems, vol. 34, no. 3, pp. 293–299, 1990.

    Article  MathSciNet  Google Scholar 

  45. Sugeno M., Park G.K., “An Approach to Linguistic Instruction Based Learning”, intern. J. of Uncertainty, Fuzziness and Knowledge Systems, vol. 1, no. 1, pp. 19–56, 1993.

    Article  MATH  Google Scholar 

  46. Suzuki H., “A Complementary Fuzzy Logic System”, IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 27, no. 2, 1997.

    Google Scholar 

  47. Takagi N., Nakashima K., Mukaidono M., “Fundamental Properties of Extended Kleene-Stone Logic Functions”, Proc. 22nd International Symposium on Multiple-Valued Logic, pp. 243–249, 1992.

    Google Scholar 

  48. Takagi N., Nakashima K, Mukaidono M., “Some Properties of Kleene-Stone Logic Functions and Their Canonical Disjunctive Form”, IEEE Transactions on Information and Systems, vol. E76-D, no. 2, pp. 163–170, 1993.

    Google Scholar 

  49. Takagi N., Nakashima K., Mukaidono M., “Some Properties and a Necessary and Sufficient Condition for Extended Kleene-Stone Logic Function”, IEEE Transactions on Information and Systems, vol. E76-D, no. 5, pp. 533–539, 1993.

    Google Scholar 

  50. Takagi N., Nakashima K., Mukaidono M., “A Necessary and Sufficient Condition for Lukasiewicz Logic Functions”, Proc. 26th International Symposium on Multiple-Valued Logic, pp. 37–42, 1996.

    Google Scholar 

  51. Thiele H., Lehmke S., “On `Bold’ Resolution Theory”, Proc. 3rd IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1945–1950, 1994.

    Google Scholar 

  52. Trillas E., “Sobre Functions de Negacion en la Teoria de Conjuctos Difusos”, Stochastica, vol. 1, pp. 47–59, 1979.

    MathSciNet  Google Scholar 

  53. Turksen I.B., “Fuzzy Normal Forms”, Fuzzy Sets and Systems, vol. 69, no. 3, pp. 319–346, 1995.

    Article  MathSciNet  Google Scholar 

  54. Wang L.X., Adaptive Fuzzy Systems and Control, Prentice Hall, 1994, pp. 9–11.

    Google Scholar 

  55. Webster’s 3rd New International Directory of the English Language Unabridged, Encyclopedia Britannica Inc., William Benton, 1971.

    Google Scholar 

  56. Weber S., “A General Concept of Fuzzy Connectives, Negations and Implications Based on T-Norms and T-Conorms”, Fuzzy Sets and Systems, vol. 11, pp. 115–134, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  57. Webster ’s College Dictionary, Random House, 1984.

    Google Scholar 

  58. Yager R.R., “On the Measure of Fuzziness and Negation. Part I: Membership in the Unit Interval”, Intern. J. of General Systems, vol. 5, no. 4, pp. 221–229, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  59. Yager R.R., “On the Measure of Fuzziness and Negation. Part II: Lattices”, Information and Control, vol. 44, no. 3, pp. 236–260, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  60. Yamakawa T., “Silicon Implementation of a Fuzzy Neuron”, IEEE Transactions on Fuzzy Systems, vol. 4, no. 4, pp. 488–501, 1996.

    Article  MathSciNet  Google Scholar 

  61. Zadeh L.A., “Fuzzy Sets”, Information and Control, vol. 8, pp. 338–353, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  62. Zadeh L.A., “PRUF-A Meaning Representation Language for Natural Languages”, in E.H. Mamdani and B.R. Gains (eds.): Fuzzy Reasoning and its Applications, Academic Press, 1981, pp. 1–66.

    Google Scholar 

  63. Zimmermann H.J., Fuzzy Set Theory and its Applications,(2nd edition), Kluwer, 1991, pp. 16–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferri, E., Kandel, A., Langholz, G. (1999). Fuzzy Negation. In: Zadeh, L.A., Kacprzyk, J. (eds) Computing with Words in Information/Intelligent Systems 1. Studies in Fuzziness and Soft Computing, vol 33. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1873-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1873-4_13

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-11362-2

  • Online ISBN: 978-3-7908-1873-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics