Towards Fuzzy Logic

  • Walenty Ostasiewicz
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 33)


The mental activity of people (concerning mainly information handling) for a long time has been divided into two groups: calculating and reasoning. The former deals with numbers and occasionally is called computing with numbers and the latter deals with words and is called computing with words.


Fuzzy Logic Boolean Algebra Deductive System Universal Classis Vague Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreoli, G. (1956). La logica del finito e del concreto, Giornale di matematiche, volume LXXXIV, 19–48.Google Scholar
  2. 2.
    Barwise J. and Cooper R. (1981). Generalized quantifiers and natural language, Linguistics and Philosophy,vol.4, 159–219.Google Scholar
  3. 3.
    Becker, O. (1930). Zur Logik der Modalitaeten, Jahrbuch f Phil. and phaenomenologische Forschung, 11, 497–548.Google Scholar
  4. 4.
    BeightlerC., Philips D., Wilde D. (1982), Foundations of Optimisation, Prentice-HallGoogle Scholar
  5. 5.
    Bell, D. (1979). Frege’s theory of judgement, Clarendon Press, Oxford.Google Scholar
  6. 6.
    Birkhoff, G. (1967). Lattice theory, Providence, Rhode Island.MATHGoogle Scholar
  7. 7.
    BIRKHOFF, G. (1969). Mathematics and psychology, SIAM Review, vol. 11, 429–469.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Black, M. (1937). Vagueness, Phil. of Science, 4, 427–455.CrossRefGoogle Scholar
  9. 9.
    Bolzano, B. (1837). Wissenschaftslehre vol. II., Sulzbach.Google Scholar
  10. 10.
    Borel, E. (1956).Probabilite’ et certitude, Presses Universitaives de France, Paris, ( Russin translation by Nauka 1964 ).Google Scholar
  11. 11.
    Bradley, R. Schwartz, N. (1979), Possible worlds, Basil Blackwell,Oxford.Google Scholar
  12. 12.
    Bronowski, J. Neyman J. (1944), The variance of the measure of a two-dimensional random set, Ann. Math. Stat. 16 nr. 4, 330–341.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bunge, M. (1967). Scientific research I, The search for systems,Springer Verlag.Google Scholar
  14. 14.
    Bunge, M. (1967). Scientific research II, The search for truth,Springer Verlag.Google Scholar
  15. 15.
    Calabrese P. (1987). An algebraic synthesis of the foundations of logic and probability, Information Sci., 42, 187–237.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Checkland P. (1980), Systems Thinking, Systems Practice, John Wiley.Google Scholar
  17. 17.
    Chwistek, L. (1948). The limits of science, Routledge and Kegan Paul, LondonGoogle Scholar
  18. 18.
    Cohen, M. R. and Nagel, E. (1962). An introduction to logic,Harcourt Brace and World.Google Scholar
  19. 19.
    Copi, I. M. (1986). Introduction to logic. Macmillan Publishing Company, NY, Collier Macmillan Publishers, London.Google Scholar
  20. 20.
    Copilowish, I. M. (1939). Border-line cases, vagueness, and ambiguity, Phil. of Science, 6, 181–195.CrossRefGoogle Scholar
  21. 21.
    Cox E. (1992). The great myth of fuzzy logic, AI Expert, January, 40–43.Google Scholar
  22. 22.
    Curry, M. B. (1963). Foundations of mathematical logic, McGraw-Hill, N.Y.MATHGoogle Scholar
  23. 23.
    Czezowski, T. (1949). Logika, PZWS, Warszawa.Google Scholar
  24. 24.
    Davis M. (1983), The prehistory and early history of automated deduction, in: Siekman J., Whrigston G. (eds.), Automation of Reasoning, Springer Verlag, 1–11.Google Scholar
  25. 25.
    Davis P. J. ( (1986). Descartes’ dream, Harcourt Brace Jovanovich.Google Scholar
  26. 26.
    Dubois, D., Prade, H., Yager, R. R.(1982). Readings in Fuzzy Sets for Intelligent Systems. (eds), Academic PressGoogle Scholar
  27. 27.
    Dubois, D., Prade, H. (1980). Fuzzy Sets and Systems. Theory and Applications,Academic Press.Google Scholar
  28. 28.
    Eisler, R. (1899). Wörterbuch der Philosophischen Begriffe und Ausdrücke,Berlin.Google Scholar
  29. 29.
    Fine, T. (1973). Theories of probability, Academic Press, New York.MATHGoogle Scholar
  30. 30.
    von Furstenberg G. M. (1990). Acting under uncertainty,Kluwer.Google Scholar
  31. 31.
    Fraenkel, A. A., Bar-Hillel, Y., A. Levy, A. (1973). Foundations of set theory,North-Holland.Google Scholar
  32. 32.
    Garret, B. (1991). Vague identity and vague objects,NousGoogle Scholar
  33. 33.
    Gentilhomme, Y. (1968). Les ensables flous et linguistquee, Cahiers de linguistique theoriqueet appliquee, v.47, Bucarest.Google Scholar
  34. 34.
    Goguen, J.A.. (1968). The logic of inexact concepts, Synthese, 19, 325–373.CrossRefGoogle Scholar
  35. 35.
    Gottwald, S. (1984). Fuzzy sets theory: some aspects of the early development in: H. J. Skala, S. Termini, E. Trillas (eds.), Aspects of vaguness,D. Reidel, 13–29.Google Scholar
  36. 36.
    Gupta, M. M. (1977). Fuzzy-ism, the first decade, in: M.M.Gupta, G.N.Saridis, B.R.Gaines (eds.), Fuzzy automata and decision processes, North-Holland, Amsterdam.Google Scholar
  37. 37.
    Hacking, I. (1975). The emergence of probability,Cambridge University Press.Google Scholar
  38. 38.
    Hasenjaeger C. (1972). Introduction to the basic concepts and problems of modern logic,D. Reidel.Google Scholar
  39. 39.
    Halmos, P. R. (1960). Naive set theory. Princeton.Google Scholar
  40. 40.
    Höhle, U. (1991). Foundation of fuzzy sets, Fuzzy sets and systems, 40, 257–296.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Hempel, C. G. (1939). Vagueness and logic, Phil. of Science, 6, 163–180CrossRefGoogle Scholar
  42. 42.
    Hilbert D, Bernays P. (1968), Grundlagen der Mathematik, Springer. 43.Iwanus, B.(1973). On Lesniewsli’s elementary ontology, Studia logica, 31, 73119.Google Scholar
  43. 44.
    Jevons, W.S. (1870). Elementary lessons in logic,London; Polish translation: Logika,1886,Warszawa.Google Scholar
  44. 45.
    Kaplan, A.(1946). Definition and specification of meanings, J. Phil., 43, 28 1288.Google Scholar
  45. 46.
    Kaplan A., Schott H.F. (1951). A calculus for empirical classes, Methodos, vol. III, n. 11, 165–188.Google Scholar
  46. 47.
    Katsoff, (1937). Modality and probability, Phil. Rev., 46, 78–85.CrossRefGoogle Scholar
  47. 48.
    Kemeny, J. G. (1963). Analyticity versus fuzziness, Synthese, 15, 57–80.CrossRefGoogle Scholar
  48. 49.
    Kotarbinski, T. (1985). Wyklady z dziejów logiki, PWN, Warszawa.Google Scholar
  49. 50.
    Kruze- Blachowicz, K. (1982). Leibniz’s Demonstratio Existentiae Dei ad mathematicam certitudinem exacta. A logical analysis, Studies in Logic, Grammar and Rethoric, Bialystok, 43–55.Google Scholar
  50. 51.
    Kruze- Blachowicz, K. (1991/92). Ontological import of the logical analysis of Leibniz’s Demonstratio Existentiae Dei, Studia in logic,Grammar and Rethoric, X/XI, 5–19.Google Scholar
  51. 52.
    Kruze- Blachowicz, K. (1992). Leibniz, wczesne pojgcie substancji, Zaklad Teorii Poznania, Bialystok.Google Scholar
  52. 53.
    Kubinski, T. (1958). Nazwy nieostre, Studia logica, 7, 115–179.MathSciNetMATHCrossRefGoogle Scholar
  53. 54.
    Kubinski, T (1960). An attempt to bring logic nearer to colloquial language, Studia logica, 10, 61–75.CrossRefGoogle Scholar
  54. 55.
    Kyburg, R. E., Smockler, H.E. (eds.).(1964). Studies in subjective probability, J. Wiley.Google Scholar
  55. 56.
    Lejewski, C. (1990). S. Lesniewski, Wiadomosci Mat., 28, 153–182.MathSciNetMATHGoogle Scholar
  56. 57.
    Lesniewski, S. (1916). Podstawy ogólnej teorii mnogosci,Prace Polskiego Kola Naukowego w Moskwie, Nr. 2, Moscow.Google Scholar
  57. 58.
    Lesniewski, S. (1992). Collected works, Polish Scientific Publishers, WarszawaMATHGoogle Scholar
  58. 59.
    Lukasiewicz, J. (1910). 0 zasadzie sprzecznosci u Arystotelesa. Studium Krytyczne (On the principle of contradiction in Aristotle. A critical study) (new edition by PWN 1987 ).Google Scholar
  59. 60.
    Lukasiewicz, J. (1910). 0 zasadzie wyl4czonego srodka, Przeglqd Filozoficzny, 13, 372–373.Google Scholar
  60. 61.
    Lukasiewicz, J. (1920). 0logice trójwartosciowej, Ruch Filozoficzny,5, 170171.Google Scholar
  61. 62.
    Lukasiewicz, J. (1970). Selected works,North-Holland and PWN.Google Scholar
  62. 63.
    MacColl, H. (1897). Symbolic reasoning II, Mind, 6, 494–510.Google Scholar
  63. 64.
    MacColl, H. (1900). Symbolic reasoning III, Mind, 9Google Scholar
  64. 65.
    Marciszewski, W. (1981). On Leibniz’s anticipation of comprehension axiom in the light of a formalization of “Demonstratio existentiae Dei”, Studies in Logic, Grammar and Rhetoric II, Warsaw University, Bialystok Branch, 2941.Google Scholar
  65. 66.
    Matheron G. (1975). Random sets and integral geometry,J.Wiley.Google Scholar
  66. 67.
    Mellor, D. H. (1965). Experimental error and deducibility, Phil. of Science. vol. 32, Nr. 2, 102–122.Google Scholar
  67. 68.
    Mellor, D. H. (1966). Inexactness and explanation, Phil. of Science. vol. 33, Nr. 4, 345–359.CrossRefGoogle Scholar
  68. 69.
    Mellor, D. H. (1967). Imprecision and explanation, Phil. of Science. vol. 34, Nr. 1, 1–10.CrossRefGoogle Scholar
  69. 70.
    Menger, K. (1951). Ensembles flous et fonctions aleatories, Comptes Rendus de l’Academie de Sciences Paris 232, 2001–2003.MathSciNetMATHGoogle Scholar
  70. Menger, K. (1951). Probabilistic geometry, Proc. N.A.S. vol. 37, 226–229CrossRefGoogle Scholar
  71. 72.
    Menger, K. (1951). Probabilistic theories of relations, Proc. Natl. Acad. Sci., vol. 37, 178–180MathSciNetCrossRefGoogle Scholar
  72. 73.
    Menger, K. (1979). Selected papers in logic and foundations, didactics, economics,D. Reidel.Google Scholar
  73. 74.
    Moisil, Gr.C. (1935). Récherches sur l’algébre de la logique, Annales Scientifiques de L’université de Jassy, XXII, 1–118.Google Scholar
  74. 75.
    Mostowski, A. (1957). On a generalization of quantifiers, Fund. Math. vol. 44, 12–36.MathSciNetGoogle Scholar
  75. 76.
    Murawski, R. (1994), Filozofia matematyki, antologia tekstow klasycznych, Wyd. naukowe UAM, Poznan.Google Scholar
  76. 77.
    Narens, L. (1981). A general theory of ratio scalability with remarks about the measurement-theoretic concept of meaningfulness, Theory and Decision, 13, 1–70.MathSciNetMATHCrossRefGoogle Scholar
  77. 78.
    Nguen, H. T. (1982). On the possibilistic approach to the analysis of evidence in. R. Yager (ed.), Fuzzy sets and possibility theory, Pergamon Press, 395401.Google Scholar
  78. 79.
    Orlov, A. I. (1975). Foundations of fuzzy sets (generalisation of Zadehian concept) in: Algorithms of multidimensional statistical analysis and their applications, CEMI AN SSSR, Moscow 1980 pp. 287–308 (in Russian).Google Scholar
  79. 80.
    Orlov, A. I. (1980). Random sets with independent elements (Lucyeans) and their applications in: Ayvasian S. A., Enyukov I. C. (eds.), Algorithms and programms for applied statistical analysis, Nauka, Moscow 1980 pp. 287–308 (in Russian).Google Scholar
  80. 81.
    Ostasiewicz, W. (1988). Formalisation of quantifier phrases, in Gupta M. M. and Yamawa T. (eds.) Fuzzy logic in knowledge-based systems, 271–286, North-Holland.Google Scholar
  81. 82.
    Ostasiewicz, W. (1991). Pioneers of fuzziness, Busefal, 46, 4–15Google Scholar
  82. 83.
    Ostasiewicz, W. (1992). Uncertainty and vagueness, in: Tofan I., Gill Aluja J., Costinescu O. and Teodorescu H. N. (eds.). Advances in fuzzy sets and applications, Iasi.Google Scholar
  83. 84.
    Ostasiewicz, W. (1992). Half a century of fuzzy sets, Kybernetika, 28, 17–20.MathSciNetMATHGoogle Scholar
  84. 85.
    Ostasiewicz, W. (1994). Remarks on various kinds of sets, Proc. of EUFIT’94 Google Scholar
  85. 86.
    Ostasiewicz, W. (1996). Some phylosophical aspects of fuzzy sets, Fuzzy Economic Review, 2, 3–33.Google Scholar
  86. 87.
    Pawlak, Z. (1985). Rough sets, and fuzzy sets, Fuzzy Sets and Systems, 17, 99–102.MathSciNetMATHCrossRefGoogle Scholar
  87. 88.
    Penrose R., (1989). Emperor’s New Mind, Oxford University Press.Google Scholar
  88. 89.
    Perzanowski (1973). The development of Cantor’s definition of the set, in: Surma S. (ed.) Studies in the history of mathematical logic, Ossolineum, 269274.Google Scholar
  89. 90.
    Post, E. L. (1921). Introduction to a general theory of elementary propositions, American J. of Mathematics 43, 165–185.MathSciNetGoogle Scholar
  90. 91.
    Przelecki, (1958). W sprawie terminów nieostrych, Studia Logica, 8, 313–317.Google Scholar
  91. 92.
    Quine, W. V. (1981). Theories and things, The Belknap Press of Harvard University Press, Cambridge.Google Scholar
  92. 93.
    Quine, W. V. (1960). Word and object, The MIT Press, Cambridge.MATHGoogle Scholar
  93. 94.
    Ramirez D. (1990). G.W. Leibniz, J. Bernuolli i les interpretacions de la probabilitat. De L’ars cogitandi a L’ars conjectandi,Barcelona, 85–105.Google Scholar
  94. 95.
    Rasiowa, H. (1962). On non -classical calculi of classes, Tihany, 11–15 Sept.Google Scholar
  95. 96.
    Rasiowa, H. (1964). A generalisation of a formalised theory of fields of sets on non-classical logics, Rozprawy Matematyczne, 42, 3–29.MathSciNetGoogle Scholar
  96. 97.
    Rasiowa, H. (1974). An algebraic approach to non-classical logics, PWN, Warszawa.MATHGoogle Scholar
  97. 98.
    Reichenbach, H. (1949). The theory of probability,University of California Press.Google Scholar
  98. 99.
    Reichenbach, H. (1966). Elements of symbolic logic, The Free Press, New YorkGoogle Scholar
  99. 101.
    Rescher, N. (1964). Introduction to logic, St. Martins Press, New York. 101.Robinson, R. (1941). III.- Ambiguity, Mind, 50, 140–155Google Scholar
  100. 102.
    Robbins, H. E. (1944). On the measure of random set, Ann. of Math. Stat. vol. 15, 70–74.Google Scholar
  101. 103.
    Rogers, R. (1971). Mathematical logic and formalised theories,North-Holland.Google Scholar
  102. 102.
    Rolf, B. (1980). A theory of vagueness, Jour. of philosophical logic, 9, 315325.Google Scholar
  103. 105.
    Rolf, B. (1981). Topics on vagueness, Ph. D. Thesis, University of Lund.Google Scholar
  104. 106.
    Russell, B. (1923). Vagueness, Austr. J. of Philosophy, 1, 84–92.Google Scholar
  105. 107.
    Russell, B. (1924). The problem of philosophy, Williams and Norgate, London.Google Scholar
  106. 108.
    Schutz, W.C. (1959). Some applications of the logical calculus for empirical classes for social methodology, Psychometrica, 24, 69–87.Google Scholar
  107. 109.
    Strzednicki, J.T.J., Rickey, V.F., Czelakowski, J. (eds.) (1984). Lesniewski’s System Ontology and Mereology,Martinus Nijhoff and Ossolineum.Google Scholar
  108. 110.
    Szpilrajn, E. (1936). Sur l equvalence des suites d’ensembles of l’equivalence des fonctions, Fundamenta Mathematicae, 26, 302–326.Google Scholar
  109. 111.
    Tarski, A. (1933), Pojgcie prawdy w jezykach nauk dedukcyjnych, Nakladem Towarzystwa Naukowego Warszawskiego, Warszawa.Google Scholar
  110. 112.
    Tarski, A. (1940). Introduction to logic,Oxford University Press.Google Scholar
  111. 113.
    Tatarkiewicz, W. (1982). Dzieje szesciu pojgc, PWN, Warszawa.Google Scholar
  112. 114.
    Toth, H. (1987). From fuzzy-set theory to fuzzy set-theory: some critical remarks on existing concepts, Fuzzy Sets and Systems, 23, 219–237Google Scholar
  113. 115.
    Vopenka, P., Hajek, P. (1972). The theory of semisets, Academia, Prague.Google Scholar
  114. 116.
    Wajsberg, M. (1931). Aksjomatyzacja trówarto§ciowego rachunku zdan, Comp. Rend. Seanc. Soc. Sci. Lett. Varsovie, Classe III, 24, 126–148Google Scholar
  115. 117.
    Weyl, H. (1940). The ghost of modality in: Philosophical essays in memory of Edmund Husserl, Cambridge (Mass.), 278–303.Google Scholar
  116. 118.
    Weyl, H. (1946). Mathematic and logic, Amer. Math. Month. 53, 2–13.Google Scholar
  117. 119.
    Wolenski, J. (1985). Filozoficzna szkola lwowsko-warszawska, PWN, Warszawa.Google Scholar
  118. 121.
    Young, C. (1931). The algebra of many-valued quantities, Mathematische Annalen, vol. 104, 260–290.Google Scholar
  119. 122.
    Zadeh, L. H. (1965), Fuzzy sets, Information Control, 8, 338–353.Google Scholar
  120. 123.
    Zawirski, Z. (1932). Les logiques nouvelles at le champ de leur application, Revue de métaphysique et de morale.Google Scholar
  121. 124.
    Zawirski, Z. (1934). Stosunek logiki wielowartoseiowej do rachunku prawdopodobienstwa, Polskie Towarzystwo Przyjaciól Nauk, Poznan 124.Zemach, E. M. (1991). Vague objects, Nous, 3, 323–340.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Walenty Ostasiewicz
    • 1
  1. 1.Wrocław University of EconomicsWroclawPoland

Personalised recommendations