Towards an Adaptive Calculus of Granules

  • Lech Polkowski
  • Andrzej Skowron
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 33)


We propose a notion of a granule of knowledge as an atom in the mereological algebra generated locally in time from the actual state of the triple <input_interface, logic_of_ knowledge, output_interface>. We illustrate our approach with examples of rough set as well as fuzzy set approach. A calculus of granules over distributed systems is presented which generalizes both rough and fuzzy approaches.


Leaf Agent Elementary Formula Deduction Rule Null Object Elementary Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.Amarel (1991), PANEL on AI and Design. In: J. Mylopoulos and R. Reiter, (Eds.), Proceedings Twelfth International Conference on Artificial Intelligence, Sydney, Australia, pp. 563–565.Google Scholar
  2. 2.
    R. Axelrod (1984), The Evolution of Cooperation. Basic Books.Google Scholar
  3. 3.
    T. Bäck (1998), An overview of parameter control methods by self-adaptation in evolutionary algorithms. Fundamenta Informaticae 35 (in print).Google Scholar
  4. 4.
    E.M. Brown (1990), Boolean Reasoning. Kluwer Academic Publishers, Dordrecht.MATHCrossRefGoogle Scholar
  5. 5.
    M. Burns (1993), Resources: Automated Fabrication. Improving Productivity in Manufacturing. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  6. 6.
    B.L. Clarke (1981), A calculus of individuals based on “Connection”. Notre Dame Journal of Formal Logic 22, pp. 204–218.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    B.L. Clarke (1985), Individuals and points. Notre Dame Journal of Formal Logic 26, pp. 61–75.Google Scholar
  8. 8.
    S.H. Clearwater, B.A. Huberman, T. Hogg (1992), Cooperative problem solving. In: B.A. Huberman (Ed.), Computation: The Micro and Macro View, ( World Scientific, Singapore, pp. 33–70.Google Scholar
  9. 9.
    J.H. Connolly, E.A. Edmunds (1994), CSCW and Artificial Intelligence. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  10. 10.
    R. Davis, R.G. Smith (1989), Negotiations as a metaphor for distributed problem solving. Artificial Intelligence 20, pp. 63–109.Google Scholar
  11. 11.
    K. Decker, V. Lesser (1993), Quantitative modelling of complex computational task environments. In: Proceedings AAAI-93, Washington, DC, pp. 217–224.Google Scholar
  12. 12.
    D. Dubois, H. Prade and R.R. Yager (1993), Readings in Fuzzy Sets for Intelligent Systems. Morgan Kaufmann, San Mateo.Google Scholar
  13. 13.
    E.H. Durfee (1988), Coordination of Distributed Problem Solvers ( Kluwer Academic Publishers, Boston, 1988 ).CrossRefGoogle Scholar
  14. 14.
    U. Fayyad, G. Piatetsky-Shapiro, G. (Eds.) (1996), Advances in knowledge discovery and data mining,MIT/AAAI Press.Google Scholar
  15. 15.
    D.B. Fogel (1998), Unearthing a fossil from the history of evolutionary computation. Fundamenta Informaticae 35 (in print).Google Scholar
  16. 16.
    J.W. Grzymala—Busse (1998), Applications of the rule induction system LERS. In: L. Polkowski, A. Skowron (Eds.), Rough Sets in Knowledge Discovery 1: Methodology and Applications, Physica-Verlag, Heidelberg, pp. 366–375.Google Scholar
  17. 17.
    J.H. Holland (1992), Adaptation in Natural and Artificial Systems. (MIT Press, Cambridge, MA.Google Scholar
  18. 18.
    T. Ishida (1994), Parallel, Distributed and Multiagent Production Systems. Lecture Notes in Computer Science 878, Springer—Verlag, Berlin.Google Scholar
  19. 19.
    J. Komorowski, L. Polkowski and A. Skowron (1997), Towards a rough mereologybased logic for approximate solution synthesis, Part 1. Studia Logica 58 pp. 143184.Google Scholar
  20. 20.
    H.S. Leonard, N. Goodman (1940), The calculus of individuals and its uses. Journal of Symbolic Logic 5, pp. 45–55.Google Scholar
  21. 21.
    S. Le§niewski (1916), Foundations of the general theory of sets (in Polish), Polish Scientific Circle, Moscow (1916); also in: S.J. Surma, J.T. Srzednicki, D.I. Barnett and V.F. Rickey (Eds.), Stanislaw Lesniewski, Collected Works, Kluwer Academic Publishers, Dordrecht (1992). 128–173.Google Scholar
  22. 22.
    B.T. Low (1993), Neural-logic belief networks–a tool for knowledge representation and reasoning. Procedings the 5-th IEEE International Conference on Tools with Artificial Intelligence, Boston, MA, pp. 34–37.Google Scholar
  23. 23.
    J. Lukasiewicz (1913), Die logishen Grundlagen der Wahrscheinilchkeitsrechnung. Krakow.Google Scholar
  24. 24.
    E.H. Mamdani, S. Assilian (1975), An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man— Machine Studies 7, pp. 1–13.Google Scholar
  25. 25.
    E. Mendelson (1964), Introduction to Mathematical Logic. Van Nostrand - Reinhold, New York.Google Scholar
  26. 26.
    Z. Pawlak (1991), Rough sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht.MATHGoogle Scholar
  27. 27.
    Z. Pawlak, A. Skowron (1994), Rough membership functions, In: R.R. Yager, M. Fedrizzi and J. Kacprzyk (Eds.), Advances in The Dempster—Shafer Theory of Evidence, Wiley, New York, pp. 251–271.Google Scholar
  28. 28.
    J.W. Payne, J.R. Beaman, E.J. Johnson (1993), The Adaptive Decision Maker. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  29. 29.
    J. Pearl (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Beliefs. Morgan Kaufmann, San Mateo.Google Scholar
  30. 30.
    L. Polkowski, A. Skowron (1994), Rough mereology. In: Proceedings of the Symposium on Methodologies for Intelligent Systems, Charlotte, NC, October 16–19, Lecture Notes in Artificial Intelligence 869, Springer-Verlag, Berlin, pp. 85–94.Google Scholar
  31. 31.
    L. Polkowski, A. Skowron (1994), Logic of rough inclusion, Rough mereological functions, Rough functions. ICS Research Report 12/94, Institute of Computer Science, Warsaw University of Technology.Google Scholar
  32. 32.
    L. Polkowski, A. Skowron (1995), Introducing rough mereological controllers: Rough quality control., In: T.Y. Lin and A.M. Wildberger (Eds.), Soft Computing, Simulation Councils, Inc., San Diego, pp. 240–243.Google Scholar
  33. 33.
    L. Polkowski, A. Skowron (1995), Rough mereology analytical mereology, New developments in rough set theory. In: M. De Glas, Z. Pawlak (Eds.), Proceedings of the Second World Conference on Fundamentals of Artificial Intelligence (WOCFAI’95), July 13–17, Angkor, Paris, pp. 343–354.Google Scholar
  34. 34.
    L. Polkowski, A. Skowron (1996), Rough mereological approach to knowledge–based distributed AI. In: J.K. Lee, J. Liebowitz, and J.M. Chae (Eds.), Critical Technology, Proceedings of the Third World Congress on Expert Systems, February 5–9, Seoul, Korea, Cognizant Communication Corporation, New York, pp. 774–781.Google Scholar
  35. 35.
    L. Polkowski, A. Skowron (1996), Implementing fuzzy containment via rough inclusions: Rough mereological approach to distributed problem solving. In: F.E. Petry, D.H. Kraft (Eds.), Proceedings of the Fifth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’96). September 8–11, New Orleans, Louisiana, pp. 1147–1153.Google Scholar
  36. 36.
    L. Polkowski, A. Skowron (1996), Learning synthesis schemes in intelligent systems. In: R.S. Michalski, J. Wnek (Eds.), Proceedings of the Third International Workshop on Multistrategy Learning (MSL’96), Harpers Ferry, West Virginia, May 23–25, George Mason University and AAAI Press, pp. 57–68.Google Scholar
  37. 37.
    L. Polkowski, A. Skowron (1996), Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15/4 pp. 333365.Google Scholar
  38. 38.
    L. Polkowski, A. Skowron (1996), Adaptive decision-making by systems of cooperative intelligent agents organized on rough mereological principles. Journal of the Intelligent Automation and Soft Computing 2/2 pp. 121–132.Google Scholar
  39. 39.
    L. Polkowski, A. Skowron (1998), Rough mereology analytical morphology. In: E. Orlowska (Ed.), Incomplete Information, Rough Set Analysis, Physica-Verlag, Heidelberg, pp. 399–437.Google Scholar
  40. 40.
    L. Polkowski, A. Skowron (1998), Towards adaptive calculus of granules. In: Proceedings of the FUZZ-IEEE’98 International Conference, Anchorage, Alaska, USA, May 5–9, pp. 111–116.Google Scholar
  41. 41.
    L. Polkowski, A. Skowron (1998), Rough sets: A perspective. In: L. Polkowski, A. Skowron (Eds.), Rough Sets in Knowledge Discovery 1: Methodology and Applications, Physica-Verlag, Heidelberg, pp. 31–58.Google Scholar
  42. 42.
    L. Polkowski, A. Skowron (Eds.) (1998), Rough Sets in Knowledge Discovery 1: Methodology and Applications. Physica-Verlag, Heidelberg.MATHGoogle Scholar
  43. 43.
    L. Polkowski, A. Skowron (Eds.) (1998), Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Physica-Verlag, Heidelberg.Google Scholar
  44. 44.
    L. Polkowski, A. Skowron (Eds.) (1998), Proc. First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98. Warszawa, Poland, June 22–27, Springer-Verlag, LNAI 1424.Google Scholar
  45. 45.
    L. Polkowski, A. Skowron, J. Komorowski (1997), Towards a rough mereologybased logic for approximate solution synthesis, Part 1. Studia Logica 58/1 pp. 143–184.Google Scholar
  46. 46.
    R.B. Rao, S.C.-Y. Lu (1993), Building models to support synthesis in early stage product design. In: Proceedings of AAAI-93; Eleventh National Conference on Artificial Intelligence, AAAI Press/MIT Press, Menlo Park, pp. 277–282.Google Scholar
  47. 47.
    G. Shafer, J. Pearl (1990), Readings in Uncertainty Reasoning. Morgan Kaufmann, San Mateo, CA.Google Scholar
  48. 48.
    A. Skowron (1995), Synthesis of adaptive decision systems from experimental data. In: A. Aamodt and J. Komorowski (Eds.), Proceedings of the Fifth Scandinavian Conference on Artificial Intelligence (SCAI’95), IOS Press, Amsterdam, pp. 220238.Google Scholar
  49. 49.
    A. Skowron, J.W. Grzymala-Busse (1994), From rough set theory to evidence theory., In: R.R. Yager, M. Fedrizzi and J. Kacprzyk (Eds.), Advances in The Dempster–Shafer Theory of Evidence, Wiley, New York, pp. 193–236.Google Scholar
  50. 50.
    A. Skowron, L. Polkowski (1995), Adaptive decision algorithms. In: Proceedings Intelligent Information Systems III, The International Workshop, Institute of Foundations of Computer Science PAS, Warsaw, pp. 103–120.Google Scholar
  51. 51.
    A. Skowron, L. Polkowski (1998), Rough mereological foundations for design, analysis, synthesis, and control in distributive systems. Information Sciences 104/1–2 pp. 129–156.Google Scholar
  52. 52.
    A. Skowron, C. Rauszer (1992), The discernibility matrices and functions in information systems. In: R. Slowinski (Ed.), Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, pp. 331–362.Google Scholar
  53. 53.
    D. Sriram, R. Logcher, S. Fukuda (1991), Computer- Aided Cooperative Product Development. Lecture Notes in Computer Science 492, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  54. 54.
    A. Tarski (1935), Zur Grundlegung der Booleschen Algebra I. Fundamenta Mathematicae 24, pp. 177–198.Google Scholar
  55. 55.
    A. Tarski (1937), Appendix E. In: J.H. Woodger, The Axiomatic Method in Biology, Cambridge University Press, Cambridge.Google Scholar
  56. 56.
    S. Tsumoto (1998), Induction of expert decision rules using rough sets and set-inclusion., In: S.K. Pal, A. Skowron (Eds.),Rough-Fuzzy Hybridization: A New Trend in Decision Making, Springer-Verlag, Singapore (in print).Google Scholar
  57. 57.
    I. Wegener (1987), The Complexity of Boolean Functions. Wiley, New York.MATHGoogle Scholar
  58. 58.
    A.N. Whitehead (1919), An Enquiry Concerning the Principles of Natural Knowledge. Cambridge University Press, Cambridge.MATHGoogle Scholar
  59. 59.
    B. Widrow, M.A. Lehr (1990), 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation. In: Proc. of the IEEE 78, pp. 1415–1442.Google Scholar
  60. 60.
    L.A. Zadeh (1965). Fuzzy sets. Information and Control, 8, pp. 338–353.Google Scholar
  61. 61.
    L.A. Zadeh (1996), Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems 4, pp. 103–111.Google Scholar
  62. 62.
    L.A. Zadeh (1997), Toward a theory of fuzzy information granulation and its certainty in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, pp. 111–127.Google Scholar
  63. 63.
    G. Zlotkin, J. Rosenshein (1993), Negotiations and conflict resolutions in noncooperative domains. In: Proceedings of AAAI-90; Eight National Conference on Artificial Intelligence, Boston, MA, pp. 100–105.Google Scholar
  64. 64.
    G. Zlotkin, J. Rosenshein (1991), Incomplete information and deception in multi-agent negotiations. In: Proceedings IJCAI-91, Sydney, Australia, pp. 225–231.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Lech Polkowski
    • 1
    • 3
  • Andrzej Skowron
    • 2
    • 3
  1. 1.Institute of MathematicsWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of MathematicsWarsaw UniversityWarsawPoland
  3. 3.Polish—Japanese Institute of Computer TechniquesWarsawPoland

Personalised recommendations