Data Models for Dealing with Linguistic and Imprecise Information

  • Guoqing Chen
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 34)


Data models play an important role in dealing with linguistic and imprecise information. This paper first describes fuzzy extensions to ER/EER concepts so that uncertainty and imprecision in data and semantics can be dealt with at a conceptual level. Fuzzy extensions to the concepts such as superclass/subclass, generalization/specialization, and shared subclass/category are discussed. The attribute inheritance is investigated in a fuzzy context, including multiple inheritance, selective inheritance, and the inheritance for derived attributes. Furthermore, certain constraints on relationships are explored in terms of the inheritance constraint, the participation constraint, and the cardinality constraint. At the (ordinary) data level, imprecision and uncertainty inherent in attribute values, database queries and integrity constraints are dealt with in fuzzy relational database models. The issues concerned center around fuzzy data representation and storage, data manipulation and extended algebraic operators, update anomalies, and information maintenance.


Linguistic Term Entity Type Integrity Constraint Relational Algebra Possibility Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anvari M.; Rose G.F. 1984. Fuzzy relational databases. Proc. of 1st Intl. Conf. on FIP, Hawaii.Google Scholar
  2. Baldwin, J. F.; Zhou, S. Q. 1984. A fuzzy relational inference language. Fuzzy Sets & Sys. Vol. 14, pp. 155 – 174.MathSciNetMATHCrossRefGoogle Scholar
  3. Buckles, B.P.; Petry F.E. 1982. A fuzzy representation of data for relational databases. Fuzzy Sets & Sys. Vol. 7, pp. 213 – 226.MATHCrossRefGoogle Scholar
  4. Bosc. P.; Pivert O. 1991. About equivalents in SQLf: a relational language. supporting imprecise querying. Proc. of Intl. Fuzzy Engineering Symposium, Japan, pp. 309–320.Google Scholar
  5. Chen, G.Q.; Vandenbulcke, J.; Kerre, E.E. 1991. A step towards the theory of fuzzy database design. Proc. ofIFSA’91, Brussels, pp. 44 – 47.Google Scholar
  6. Chen G.Q.; Vandenbulcke J.; Kerre E.E. 1992. A general treatment of data redundancy in a fuzzy relational data model, Journal of the American Society for Information Science, 43, pp. 304 – 311.CrossRefGoogle Scholar
  7. Chen G.Q.; Kerre E.E.; Vandenbulcke J. 1993. On the lossless-join decomposition in a fuzzy relational data model. Proceedings of International Symposium on Uncertainty Modelling & analysis (ISUMA’93), IEEE Press, Maryland (USA), pp. 440 – 446.Google Scholar
  8. Chen, G.Q.; Kerre, E.E.; Vandenbulcke, J. 1994a. A computational algorithm for the FFD closure and a complete axiomatization of fuzzy functional dependency (FFD). Int. J. of Intell. Sys. Vol. 9 (5), pp. 421 – 439.CrossRefGoogle Scholar
  9. Chen, G. Q.; Kerre, E. E.; Vandenbulcke, J. 1994b. Fuzzy normal forms and a dependencypreserving decomposition into 0-F3NF. Proc. of WCCI: FUZZ-IEEE ‘94, pp. 156 – 161.Google Scholar
  10. Chen G.Q.; Kerre E.E. 1996c. An extended Boyce-Codd normal form in fuzzy relational databases. Proc. ofFUZZ-IEEE’96, New Orleans, pp. 1546 – 1551.Google Scholar
  11. Chen, G.Q., 1995a. Fuzzy functional dependencies and a series of design issues of fuzzy relational databases, in P. Bosc and J. Kacprzyk (eds.), Studies in Fuzziness: fuzzy sets and possibility theory in database management systems, Physica-Verlag (Springer-Verlag, Germany ), pp. 166 – 185.Google Scholar
  12. Chen G.Q.; Kerre E.E.; Vandenbulcke J. 1995b. The dependency-preserving decomposition and a testing algorithm in a fuzzy relational data model. Fuzzy Sets & Sys. Vol. 72, pp. 27 – 37.MathSciNetMATHCrossRefGoogle Scholar
  13. Chen, G. Q.; Kerre, E. E.; Vandenbulcke, J. 1996a. Normalization based on fuzzy functional dependency in a fuzzy relational data model. Information Systems. Vol.21(3), pp. 299310.Google Scholar
  14. Chen G.Q.; Kerre E.E.; Vandenbulcke J. 1996b. Extended keys and integrity rules based on fuzzy functional dependency. Proc. of EUFIT’96, Verlag-Mainz, Germany, Vol. 2, pp. 806 – 810.Google Scholar
  15. Chen G.Q.; Kerre E.E. 1997. Designing a general-purpose system for fuzzy data representation and queries. Proc. ofIFSA’97, Prague, pp. 255 – 260.Google Scholar
  16. Chen P. P., 1976, The entity-relationship model: towards a unified view of data. ACM Transactions on Database Systems (1)1, pp.9–36.Google Scholar
  17. Codd, E.F. 1970. A relation model for large shared data banks. Comm. of The ACM, Vol.(13)6, pp. 377 – 387.Google Scholar
  18. Cubero, J.C.; Vila, M.A. 1994. A new definition of fuzzy functional dependency in fuzzy relational databases, Int. J. of Intell. Sys. Vol. 9 (5), pp. 441 – 448.CrossRefGoogle Scholar
  19. Dos Santos C.; Neuhold E.; Furtado A. 1979. A data type approach to the entity-relationship model. Proceedings of ER Conference ‘79.Google Scholar
  20. Dubois, D.; Prade, H. 1992. Generalized dependencies in fuzzy data bases. Proc. of IPMU’92, pp. 263 – 266.Google Scholar
  21. Elmasri R.; Weeldreyer J.; Hevner A. 1985. The category concept: an extension to the entityrelationship model. International Journal on Data and Knowledge Engineering 1: 1.CrossRefGoogle Scholar
  22. Gogolla M.; Hohenstein U. 1991. Towards a semantic view of an extended entity-relationship model. TODS 16: 3.MathSciNetCrossRefGoogle Scholar
  23. Kacprzyk J.; Ziolkowski A. 1986. Database queries with fuzzy linguistic quantifiers. IEEE Trans. on Sys. Man and Cybern., 16: 474 – 479.CrossRefGoogle Scholar
  24. Kacprzyk J.; Zadrozny S. 1994. Fuzzy querying for Microsoft Access. Proc. of 3rd IEEE Conf. on Fuzzy Systems. Orlando, l.pp. 167 – 171.Google Scholar
  25. Kerre E.E.; Zenner R.B.R.C.; De Caluwe R.M.M. 1986. The use of fuzzy set theory in information retrieval and databases: a survey. Journal of the American Society for Information Science, 37 (5),pp. 341 – 345.Google Scholar
  26. Kerre E. E.; Chen G. Q. 1995. An overview of fuzzy data models. In P. Bosc and J. Kacprzyk (eds.), Studies in Fuzziness: Fuzziness in Database Management Systems. Physica- Verlag, pp. 23 – 41.Google Scholar
  27. Kiss A., 1990. X.-decomposition of fuzzy relational databases. Proc. of Int. Workshop on Fuzzy Sets and Systems, December, Visegrad, Hungary.Google Scholar
  28. Liu, W. Y. 1992. The reduction of the fuzzy data domain and fuzzy consistent join. Fuzzy Sets & Sys. Vol. 50, pp. 89 – 96.MATHCrossRefGoogle Scholar
  29. Prade, H.; Testemale, C. 1983. Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries. Proc. of 2nd NAFIPS Workshop, Schenectady, NY.Google Scholar
  30. Raju, K. V. S. V. N.; Majumdar, A. K. 1988. Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM trans. on Database Systems, Vol. 13 (2), pp. 129 – 166.CrossRefGoogle Scholar
  31. Ruspini E., 1986, Imprecision and uncertainty in the entity-relationship model. In H. Prade and C. V. Negoita (eds.), Fuzzy Logic in Knowledge Engineering, Verlag TUV Rheinland, pp. 18 – 22.Google Scholar
  32. Scheuermann P.; Schiffner G.; Weber H. 1979. Abstraction capabilities and invariant properties modeling within the entity-relationship approach. Proceedings of ER Conference ‘79.Google Scholar
  33. Teorey T.; Yang D.; Fry J. 1986. A logical design methodology for relational databases using the extended entity-relationship model. ACM Computing Survey, 18: 2.CrossRefGoogle Scholar
  34. Umano, M. 1983. Retrieval from fuzzy databases by fuzzy relational algebra. In: Sanchez and Gupta (eds.), Fuzzy Information Knowledge Representation and Decision Analysis. Pergamon Press, Oxford, England. pp. 1 – 6.Google Scholar
  35. Vandenberghe R. M., 1991, An extended entity-relationship model for fuzzy databases based on fuzzy truth values. Proceedings ofIFSA’91, Brussels, pp. 280 – 283.Google Scholar
  36. Yager R.R. 1988. On ordered. weighted average aggregation operators in multicriteria decisionmaking. IEEE Trans. on Sys.Man and Cyerbn. 18 (1),pp. 183 – 190.MathSciNetMATHCrossRefGoogle Scholar
  37. Yager R.R. 1991. Fuzzy quotient operators for fuzzy relational databases. Proc. of Intl. Fuzzy Engineering Symposium. Japan, pp. 289 – 296.Google Scholar
  38. Zemankova; M.; Kandel, A. 1984. Fuzzy Relational Database - a key to expert system. Verlag TUV Rheinland.Google Scholar
  39. Zvieli A.; Chen P. P. 1985. Entity-relationship modeling and fuzzy databases. Proceedings of 2nd Conference on Data Engineering, LA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Guoqing Chen
    • 1
  1. 1.School of Economics and Management, MIS DivisionTsinghua UniversityBeijingP. R. China

Personalised recommendations