Decision Analysis by Advanced Fuzzy Systems

  • H. Kiendl
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 34)


Human beings live in a world that shows a multitude of phenomena, which can vary continuously Think of colours that can be characterized by wavelengths or frequencies of the real valued electromagnetic spectrum. The development of language has produced an inestimable tool to fmd one’s way in this cosmos of phenomena. For instance, a language offers different words such as red, yellow, green or blue to distinguish colours. Each of these words is used to label an infinite set of different pure colours that belong to a certain interval of the frequency spectrum. Thus, words allow us to handle the huge cosmos of phenomena by dividing it into suitable ‘granules’ where the words can be considered as the labels of the granules (Zadeh, 1997). To continue the example of the colours, it is interesting to note that the language of certain peoples who live in a mainly green environment contains dozens of words to distinguish slightly different kinds of green but no word that summarizes all these green colours. Obviously in the development of languages, the precision of the words that correspond to the granules adapts constantly to changing needs.


Membership Function Fuzzy System Fuzzy Controller Decision Module Positive Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zadeh, L. A.: Fuzzy Sets. Information and Control 8, 1965, pp. 338 — 353Google Scholar
  2. [2]
    Zadeh, L. A.: Probability Measures of Fuzzy Events. Journal of Mathematical Analysis and Applications 23, 1968, pp. 421— 427Google Scholar
  3. [3]
    Driankov, D., Hellendoom, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer-Verlag, Berlin 1993MATHCrossRefGoogle Scholar
  4. [4]
    Kiendl, H.: Verfahren zur Erzeugung von Stellgrößen am Ausgang eines Fuzzy-Reglers und Fuzzy-Regler hierfür. Patent DE 43 08 083, 1994Google Scholar
  5. [5]
    Kiendl, H.: System of controlling or monitoring processes or industrial plants employing a dual-line fuzzy unit. U.S. Patent Number 5,826, 251, 1998Google Scholar
  6. [6]
    Kiendl, H.: Fuzzy Control methodenorientiert, Oldenbourg-Verlag, München, Wien 1997Google Scholar
  7. [7]
    Lakewand, H.: Erkennen handgeschriebener Ziffern mit Hilfe der Fuzzy-Logik. Diplomarbeit Fachhochschule der Deutschen Bundespost Telekom, Berlin 1994Google Scholar
  8. [8]
    Kiendl, H.: Verfahren zur Defuzzifizierung für signalverarbeitende Fuzzy-Baueinheiten und Filtereinrichtung hierfür. Patent DE 44 16 465, 1995Google Scholar
  9. [9]
    Kiendl, H.: The inference filter. in: ELITE (Ed.), Proceedings EUFIT ‘84, Verlag der Augustinus Buchhandlung, Aachen 1994, pp. 438 — 447Google Scholar
  10. [10]
    Reil, G., Jessen, H.: Fuzzy contour modelling of roll bent components using inference filter. in: ELITE (Ed.): Proceedings EUFIT ‘85, Verlag der Augustinus Buchhandlung, Aachen 1995, pp. 771— 774Google Scholar
  11. [11]
    Kiendl, H., Knicker, R., Niewels, F.: Two-way fuzzy controllers based on hyperinference and inference filter. In: Jamshidi, M., Yuh, J., Danchez, P. (eds.), Proceedings Second World Automation Congress, Vol. 4, Intelligent Automation and Control, TSI Press, Montpellier 1996, pp. 387 — 394Google Scholar
  12. [12]
    Schwane, U.: Datenbasierte Generierung von Adaptionsregeln und Anwendung zur Erhöhung der Bahngenauigkeit eines Industrieroboters. Dissertation Universität Dortmund 1998. Fortschritt-Berichte VDI Reihe 8: Meß-, Steuerungs-und Regelungstechnik, VDI-Verlag Düsseldorf 1998Google Scholar
  13. [13]
    Kiendl, H.: Verfahren zur Defuzzifizierung far signalverarbeitende Fuzzy-Baueinheiten. Patent DE 19 640 635, 1996Google Scholar
  14. [14]
    Kiendl, H.: Non-translation-invariant Defuzzification. In: Proceedings of the sixth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE ‘87), Barcelona 1997, pp. 737 — 742Google Scholar
  15. [15]
    Krone, A., Schwane, U.: Generating fuzzy rules form contradictory data of different control strategies and control performances. In: Proceedings FUZZ-IEEE ‘86, New Orleans 1996, pp. 492 — 497Google Scholar
  16. [16]
    Schwane, U., Praczyk, J., Kiendl, H.: Adaption von Reglerparametern unter Verwendung von datenbasiert generierten positiven und negativen Fuzzy-Regeln mit Konklusionen mit mehreren Ausgangsgrößen. 7. GMAWorkshop Fuzzy Control, Forschungsbericht der Fakultät für Elektrotechnik Nr. 0397, ISSN 0941–4169, 1997, pp. 53 — 67Google Scholar
  17. [17] Kiendl, H.: Self-organising Adaptive Moment-based Clustering. FUZZ-IEEE ‘88, Anchorage (Alaska)
    Paper #1237, pp. 1470 — 1475Google Scholar
  18. [18]
    Kiendl, H.: Next Generation Fuzzy Systems. in ELITE (Ed.): Proceedings EUFIT ‘88, Verlag der Augustinus Buchhandlung, Aachen 1998, pp. 779–788Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • H. Kiendl
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of DortmundDortmundGermany

Personalised recommendations