Genetic Algorithms Applied to Nuclear Reactor Design Optimization

  • C. M. N. A. Pereira
  • R. Schirru
  • A. S. Martinez
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 38)


A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality.


Genetic Algorithm Search Space Simple Problem Isotopic Enrichment Equivalent Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cacuci, D. G. (1990): Global Optimization and Sensitivity Analisys, Nuclear Science and Engineering, 104 (1), 78–88.MathSciNetGoogle Scholar
  2. Darwing, C. (1859): The Origin of Species by Means of Natural Selection, John Murray, London.Google Scholar
  3. Davis, L. (1991): Handbook of Genetic Algorithms, VNR, New York.Google Scholar
  4. DeChaine, M. D. and Feltus, M. A. (1995): Nuclear Fuel Management Optimization Using Genetic Algorithms, Nuclear Technology, 111, 109–114.Google Scholar
  5. Ferguson, R. O., Sargent, L. A. (1958): Linear Programming. Fundamentals and Applications, Mc Graw-Hill Book Company.MATHGoogle Scholar
  6. Gass, I. S. (1975): Linear Programming. Methods and Applications, Mc Graw-Hill Book Company.MATHGoogle Scholar
  7. Goldberg, D. E. (1989): Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley.Google Scholar
  8. Gray, P., Hart, W., Painton, L., Phillips, C., Trahan, M., Wagner, J. (1997): A Survey of Global Optimization Methods, Sandia National Laboratories, Albuquerque.Google Scholar
  9. Grefenstette, J. J. (1990): A User’s Guide to Genesis Version 5. 0.Google Scholar
  10. Holland, J. H. (1975): Adaptation in Natural and Artificial Systems, Ann Arbor, University of Michigan.Google Scholar
  11. Haibach, B. V., Feltus M. A. (1997): A Study on the Optimization of Integral Fuel Burnable Absorbers Using Genetic Algorithms based on Cigaro fuel Management System, Annals of Nuclear Energy, 24 (6).Google Scholar
  12. Michalewicz, Z. (1994): Genetic Algorithms + data Structures = Evolution Programs, Springer-Verlag, 2nd Extended Edition.Google Scholar
  13. Muhlenbein, H., Schomisch, M. and Born, J. (1991): The Parallel Genetic Algorithm as Function Optimizer, In Proc. Of Fourth Int. Conf. On Genetic Algorithms, San Diego, CA, 271–278.Google Scholar
  14. Omori, R., Sakakibara, Y. and Suzuki, A. (1997): Application of Genetic Algorithms to Optimization Problems in the Solvent Extraction Process for Spent Nuclear Fuel, Nuclear technology, 118 (1), 26–31.Google Scholar
  15. Pereira, C. M. N. A., Schirru, R. and MArtinez, A. S. (1999): Basic Investigations Related to Genetic Algorithms in Core Designs, Annals of Nuclear Energy, 26 (3), 173–193.CrossRefGoogle Scholar
  16. Rozon D. and Beaudet, M. (1992): Canada Deuterium Uranium Reactor Design Optimization Using Three-Dimensional Generalized Perturbation Theory, Nuclear Science and Engineering, 111 (1), 1–20.Google Scholar
  17. Suich, J. E. and Honec, H. C. (1967): The HAMMER System Heterogeneous Analysis by Multigroup Methods of Exponentials and Reactors, Savannah River Laboratory, Aiken South Carolina.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • C. M. N. A. Pereira
    • 1
  • R. Schirru
    • 2
  • A. S. Martinez
    • 2
  1. 1.Comissão Nacional de Energia NuclearInstituto de Engenharia NuclearRio de JaneiroBrazil
  2. 2.Programa de Engenharia NuclearUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations