Fuzzy Prototypes for Fuzzy Data Mining

  • Maria Rifqi
  • Sophie Monties
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 39)


This paper shows a summarization method. We focus on the construction of fuzzy prototypes by means of typical values. For this purpose, we use a formal framework of measures of comparison of values of attributes of data for the management of fuzzy databases especially for data mining. One of the originalities of this paper lies in the fact that values are fuzzy.


Membership Function Membership Degree Summarization Method Fuzzy Query Flexible Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Andreasen, H. Christiansen, and H. L. Larsen. Flexible query answering systems. Kluwer Academic Plublisers, 1997.Google Scholar
  2. 2.
    B. Bouchon-Meunier. Fuzzy similitude and approximate reasoning. In P. P. Wang, editor, Advances in Fuzzy Theory and Technology, pages 161–166. Bookwrights Press, 1993.Google Scholar
  3. 3.
    B. Bouchon-Meunier, M. Rifqi, and S. Bothorel. Towards general measures of comparison of objects. Fuzzy Sets and Systems, 84 (2): 143–153, 1996.CrossRefGoogle Scholar
  4. 4.
    B. Bouchon-Meunier and L. Valverde. Analogy relations and inference. In Proceedings of 2“, d IEEE International Conference on Fuzzy Systems, pages 1140–1144, San Fransisco, 1993.Google Scholar
  5. 5.
    D. Dubois and H. Prade. Fuzzy Sets and Systems, Theory and Applications. Academic Press, New- York, 1980.Google Scholar
  6. 6.
    D. Dubois and H. Prade. On data summarization with fuzzy sets. In Fifth IFSA Congress, pages 465–468, 1993.Google Scholar
  7. 7.
    U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery in databases. AI Magazine, 17 (3): 37–72, 1996.Google Scholar
  8. 8.
    G. Kleiber. Prototype et prototypes. In Sémantique et cognition. Editions du C.N.R.S, Paris, 1991.Google Scholar
  9. 9.
    E. J. McCluskey. An introduction to the theory of switching circuits. McGraw-Hill, New-York, 1965.Google Scholar
  10. 10.
    S. V. Ovchinnikov. Representations of transitive fuzzy relations. In H. J. Skala, S. Termini, and E. Trillas, editors, Aspects of Vagueness, pages 105–118. D. Reidel Publishing Company, 1984.Google Scholar
  11. 11.
    D. Rasmussen and R.R Yager. Fuzzy query language for hypothesis evaluation. In T. Andreasen, H. Christiansen, and H. L. Larsen, editors, Flexible Query Answering Systems, pages 23–43. Kluwer Academic Publishers, 1997.CrossRefGoogle Scholar
  12. 12.
    E. Rosch. Principles of categorization. In E. Rosch and B. B. Lloyd, editors, Cognition and categorization, pages 27–48. Hillsdale, N. J.: Laurence Erlbaum Associates, 1978.Google Scholar
  13. 13.
    C. Schmidt: The relevance to semantic theory of a study of vagueness. In 10th regional meeting of the Chicago Linguistic Society, pages 617–630, 1974.Google Scholar
  14. 14.
    E. Trillas and L. Valverde. On implication and indistinguishability in the setting of fuzzy logic. In J. Kacprzyk and R. R. Yager, editors, Management Decision Support Systems Using Fuzzy Sets and Possibility Theory. Verlag TUV, Rheinland, 1984.Google Scholar
  15. 15.
    A. Tversky. Features of similarity. Psychological Review, 84: 327–352, 1977.CrossRefGoogle Scholar
  16. 16.
    L. Valverde. On the structure of t-indistinguishability operators. Fuzzy Sets and Systems, 17: 313–328, 1985.CrossRefGoogle Scholar
  17. 17.
    R. Yager. On linguistic summaries of data. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 347–363. AAAI Press, 1991.Google Scholar
  18. 18.
    R. R. Yager. A note on a fuzzy measure of typicality. Technical Report #MII1513R, Machine Intelligence Institute, Iona College, 1995.Google Scholar
  19. 19.
    L. A. Zadeh. A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. International Journal of Man-Machine Studies, 8: 249–291, 1976.CrossRefGoogle Scholar
  20. 20.
    L. A. Zadeh. Pruf-a-meaning representation language for natural languages. International Journal of man-machine studies, 10: 395–460, 1978.CrossRefGoogle Scholar
  21. 21.
    L. A. Zadeh. A note on prototype theory and fuzzy sets. Cognition, 12: 291–297, 1982.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Maria Rifqi
    • 1
  • Sophie Monties
    • 1
  1. 1.LIP6 — Université P. et M. CurieParis Cedex 05France

Personalised recommendations