On Fuzzy Thresholding of Remotely Sensed Images

  • B. Uma Shankar
  • A. Ghosh
  • S. K. Pal
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 42)


Effectiveness of various fuzzy thresholding techniques (based on entropy of fuzzy sets, fuzzy geometrical properties, and fuzzy correlation) is demonstrated on remotely sensed images. A new quantitative index for image segmentation using the concept of homogeneity within regions is defined. Results are compared with those of probabilistic thresholding, and fuzzy c-means and hard c-means cluster­ing algorithms, both in terms of index value (quantitatively) and structural de­tails (qualitatively). Fuzzy set theoretic algorithms are seen to be superior to their respective non-fuzzy counter parts. Among all the techniques fuzzy correlation, followed by fuzzy entropy, performed better for extracting the structures. Fuzzy geometry based thresholding algorithms produced a single stable threshold for a wide range of membership variation. Both IRS and SPOT imagery are considered for this investigation.


Membership Function Image Segmentation Gray Level Conditional Entropy Fuzzy Entropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderberg, M. R. (1973) Cluster Analysis for Applications. (New York: Aca­demic Press).MATHGoogle Scholar
  2. 2.
    Barzohar, M. and Cooper, D. B. (1993) Automatic finding of main roads in aerial images by using geometric-stochastic models and estimation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 459–464.Google Scholar
  3. 3.
    Bezdek, J. C. (1981) Pattern Recognition with Fuzzy Objective Function Algo­rithms. (New York: Plenum Press).CrossRefGoogle Scholar
  4. 4.
    Bezdek, J. C. and Pal, S. K. eds. (1992) Fuzzy Models for Pattern Recognition: Methods that Search for Structures in Data. (New York: IEEE Press).Google Scholar
  5. 5.
    Cannon, R. L., Dave, R., Bezdek, J. C, and Trivedi, M. (1986) Segmentation of a thematic mapper image using the fuzzy c-means clustering algorithm. IEEE Transactions on Geoscience and Remote Sensing, 24, 400–408.CrossRefGoogle Scholar
  6. 6.
    Deravi, F. and Pal, S. K. (1983) Gray level thresholding using second order statistics. Pattern Recognition Letters, 1, 417–422.CrossRefGoogle Scholar
  7. 7.
    Fisher, L. and Van Ness (1971) Admissible Clustering Procedure. Biometrika, 58, 91–104.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ghosh, A. (1995) Use of fuzziness measures in layered networks for object extraction: a generalization. Fuzzy Sets and Systems, 72, 331–348.CrossRefGoogle Scholar
  9. 9.
    Gonzalez, R. C. and Wood, R. E. (1993) Digital Image Processing. (Reading: Addison-Wesley).Google Scholar
  10. 10.
    Hu, J., Sakoda, B. and Pavlidis, T. (1992) Interactive road finding for aerial images. In Applications of Computer Vision, 56–63.Google Scholar
  11. 11.
    Kapur, J. N., Sahoo, P. K. and Wong, A. K. C. (1985) A new method for gray level picture thresholding using the entropy of histogram. Computer Vision, Graphics and Image Processing, 29, 273–285.CrossRefGoogle Scholar
  12. 12.
    Laprade, R. H. (1988) Split-and-merge segmentation of aerial photographs. Computer Vision, Graphics and Image Processing, 44, 77–86.CrossRefGoogle Scholar
  13. 13.
    Mandal, D. P., Murthy, C. A and Pal, S. K. (1994) Utility of multiple choices is detecting ill-defined roadlike structures. Fuzzy Sets and Systems, 64, 213–228.CrossRefGoogle Scholar
  14. 14.
    Murthy, C. A. and Pal, S. K. (1992) Bounds for membership function: corre­lation based approach. Information Science, 65, 143–171.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Murthy, C. A. and Pal, S. K. (1992) Histogram thresholding by minimizing gray level fuzziness. Information Sciences, 60, 107–135.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Murthy, C. A., Pal, S. K. and Dutta Majumder, D (1985) Correlation between two fuzzy membership functions. Fuzzy Sets and Systems, 7,23–38.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pal, N. R. and Pal, S. K. (1989) Entropie thresholding. Signal Processing, 16, 97–108.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pal, N. R. and Pal, S. K. (1991) Entropy: a new definition and its applications. IEEE Trans. Syst. Man and Cybern., SMC-21, 1260–1270.CrossRefGoogle Scholar
  19. 19.
    Pal, N. R. and Pal, S. K. (1992) Higher order fuzzy entropy and hybrid entropy of a set. Information Sciences, 61, 211–231.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Pal, N. R. and Pal, S. K. (1993) A review on image segmentation. Pattern Recognition, 24, 1277–1294.CrossRefGoogle Scholar
  21. 21.
    Pal, S. K. (1982) A note on the quantitative measure of image-enhancement through fuzziness. IEEE Transactions on Pattern Analysis and Machine Intel­ligence, PAMI-4, 204–208.CrossRefGoogle Scholar
  22. 22.
    Pal, S. K. and Dutta Majumder, D. (1986) Fuzzy Mathematical Approach to Pattern Recognition. (New York: John Wiley, Halsted Press).MATHGoogle Scholar
  23. 23.
    Pal, S. K. and Ghosh, A. (1992) Fuzzy geometry in image analysis. Fuzzy Sets and Systems, 48, 23–40.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pal, S. K. and Ghosh, A. (1992) Image segmentation using fuzzy correlation. Information Sciences, 62, 223–250.MATHCrossRefGoogle Scholar
  25. 25.
    Pal, S. K., King, R. A. and Hashim, A. A. (1983) Automatic grey level thresh­olding through index of fuzziness and entropy. Pattern Recognition Letters, 1, 141–146.CrossRefGoogle Scholar
  26. 26.
    Pal, S. K. and Rosenfeld, A. (1988) Image enhancement and thresholding by optimization of fuzzy compactness. Pattern Recognition Letters, 7, 77–86.MATHCrossRefGoogle Scholar
  27. 27.
    Prewitt, J.M. S. (1970) Object enhancement and extraction. In B. S. Lipkin and A. Rosenfeld, editors, Picture Processing and Psycho-Pictorics. (New York: Academic Press).Google Scholar
  28. 28.
    Richards, J. A. (1993) Remote Sensing Digital Image Analysis: An Introduc-tion(Second Edition). (New York: Springer Verlag).CrossRefGoogle Scholar
  29. 29.
    Rosenfeld, A. and Kak, A. C. (1982) Digital Picture Processing, Vol. I & II. (New York: Academic Press).Google Scholar
  30. 30.
    Sahasrabudhe, S. C. and Dasgupta, S. C. (1992) A valley-seeking threshold selection technique. In Computer Vision and Image Processing, L. Shapiro and A. Rosenfeld eds., (Boston: Academic Press), 55–65.Google Scholar
  31. 31.
    Sahoo, P. K., Soltani, S., Wong, A. K. C. and Chen, Y. C. (1988) A survey of thresholding techniques. Computer Vision, Graphics and Image Processing, 41, 233–260.CrossRefGoogle Scholar
  32. 32.
    Shannon, C. E. (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.MathSciNetMATHGoogle Scholar
  33. 33.
    Swain, P. H. and Davis, M. (1978) Remote Sensing: The Quantitative Ap­proach. (New York: McGraw Hill Inc.).Google Scholar
  34. 34.
    Thiruvengadachari, S. and Kalpana, A. R., and Revised by: Adiga S., and Sreenivasi, M. (1989) IRS Data Users Handbook (Revision 1).(INDIA: Dept. of Space, Govt, of India, NRSA Data Centre, NRSA).Google Scholar
  35. 35.
    Ton, J. (1988) A Knowledge Based Approach for LANDSAT Image Interpre­tation. PhD thesis, Michigan State University.Google Scholar
  36. 36.
    Trivedi, M. and Bezdek, J. C. (1986) Low-level segmentation of aerial images with fuzzy clustering. IEEE Transactions on Systems, Man, and Cybernetics, 16, 589–598.CrossRefGoogle Scholar
  37. 37.
    Xie, W. X. and Bedrosian, S. D. (1988) Experimentally driven fuzzy member­ship function for gray level images. Journal of Franklin Institute, 325, 154–164.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zadeh, L. A. (1965) Fuzzy sets. Information and Control, 8, 338–353.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Zlotnick, A. and Carnine (Jr.), P. D. (1993) Finding road seeds in aerial images. Image Understanding, 57, 307–330.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • B. Uma Shankar
    • 1
  • A. Ghosh
    • 1
  • S. K. Pal
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteCalcuttaIndia

Personalised recommendations