Adaptive Clustering for Efficient Segmentation and Vector Quantization of Images

  • Sunanda Mitra
  • Ramiro Castellanos
  • Su-Yu Yang
  • Surya Pemmaraju
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 42)


Image segmentation allows mapping of similar regions in a scene leading to recognition of distinct objects by high-level vision systems. Therefore an efficient technique of clustering is a natural choice for image segmentation. Recognition of similar patterns embedded in image data is the basis of clustering subregions in an image. Efforts to develop algorithms for adaptive and less computationally com­plex classification of data have led to implementation of statistical classifiers in artificial neural networks (of both supervised and unsupervised categories). Such neural network architectures are ways to achieve autonomous processing of patterns but are not considered to incorporate intelligent decision processes offered by vari­ous models of fuzzy clustering. Integration of fuzzy membership values of samples into neural network processing generates more powerful models for autonomous and intelligent pattern recognition algorithms. Efficient object extraction for image segmentation as well as vector quantization for image coding can be achieved by neuro-fuzzy clustering algorithms. Examples of both for noisy synthetic as well as natural gray-level/color images are demonstrated in the spatial domain and in the wavelet-transformed domain.


Compression Ratio Synthetic Aperture Radar Input Pattern Fuzzy Membership Vector Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, New York, 1973.MATHGoogle Scholar
  2. 2.
    K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.MATHGoogle Scholar
  3. 3.
    R. P. Lippmann. An introduction to computing with neural nets. IEEE AS SP Magazine, pages 4–22, April 1987.Google Scholar
  4. 4.
    C. T. Lin and C. S. G. Lee. Neural Fuzzy Systems, A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, New Jersey, 1996.Google Scholar
  5. 5.
    B.S. Manjunath, S.T. Simchony, and R. Chellapa. Stochastic and determin­istic networks for texture segmentation. IEEE Trans. Acoust. Speech Signal Processing, 38(6): 1039–1049, 1990.CrossRefGoogle Scholar
  6. 6.
    G. Carpenter and S. Grossberg. A massively parallel architecture for a self–organizing neural pattern recognition machine. Comput. Vision Graphics Image Processing, 37:54–115, 1987.CrossRefMATHGoogle Scholar
  7. 7.
    T. Kohonen. Self-Organizing and associative memory. Springier Verlag, New York, 1988.CrossRefGoogle Scholar
  8. 8.
    L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    S. Mitra, Y. Kim, and S. Pemmaraju. Adaptive pattern recognition by self-organizing neural networks. In S. Mitra, M. Gupta, and W. Kraske, editors, Neural and Fuzzy Systems: The emerging science of intelligent computing, vol­ume 12, pages 185–214. SPIE Press, Washington, 1994.Google Scholar
  10. 10.
    P. Simpson. Fuzzy min-max neural networks — part 1: Classification. IEEE Trans. Neural Networks, 3:776–783, 1992.CrossRefGoogle Scholar
  11. 11.
    P. Simpson. Fuzzy min-max neural networks — part 2: Clustering. IEEE Trans. Fuzzy Syst., 1:32–45, 1993.CrossRefGoogle Scholar
  12. 12.
    G. A. Carpenter, S. Grossberg, and D. B. Rosen. Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, 4(6):759–771, 1991.CrossRefGoogle Scholar
  13. 13.
    S. Newton, S. Pemmaraju, and S. Mitra. Adaptive fuzzy leader clustering of complex data sets in pattern recognition. IEEE Trans. Neural Networks, 3(5):794–800, 1992.CrossRefGoogle Scholar
  14. 14.
    Y. Kim and S. Mitra. An adaptive integrated fuzzy clustering model for pattern recognition. Fuzzy Sets and Systems, 65:297–310, 1994.CrossRefGoogle Scholar
  15. 15.
    S. Pemmaraju and S. Mitra. Identification of noise outliers in clustering by a fuzzy neural network. Proc. IEEE Int. Conf. Fuzzy Syst., pages 1269–1274, 1993.Google Scholar
  16. 16.
    S. Mitra and S. Pemmaraju. Adaptive vector quantization using an ART-based neuro-fuzzy clustering algorithm. Proc. Int. Conf. on Neural Networks, 1996.Google Scholar
  17. 17.
    S. Mitra, S. Pemmaraju, S. Kompella, and S. Meadows. Efficient color image compression using integrated fuzzy neural networks for vector quantization. Proc. IEEE Int. Conf Syst. Man and Cyb., 1, 1997.Google Scholar
  18. 18.
    S. Mitra, S. Y. Yang, M. Wilson, G. Zamora, and G. Thoma. Wavelet-based adaptive vector quantization for high-fidelity compression and fast transmission of visible human color images. CD-ROM Proc. 2nd Visible Human Project Conf, 1998.Google Scholar
  19. 19.
    S. Mitra, R. Castellanos, and H. Castillo. Performance of nonlinear methods in medical image restoration. Proc. SPIE on Nonlinear Image Processing X, 3646, 1999.Google Scholar
  20. 20.
    R. Castellanos and S. Mitra. Efficient segmentation of degraded images by a neuro-fuzzy classifier. Proc. North American Fuzzy Inf. Proc. Soc, 1999.Google Scholar
  21. 21.
    A. Kher and S. Mitra. Optimum morphological filtering to remove speckle noise from SAR images. Proc. SPIE on Image Algebra and Morphological Image Processing IV, 2030:97–108, 1993.CrossRefGoogle Scholar
  22. 22.
    J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981.CrossRefMATHGoogle Scholar
  23. 23.
    J. Bezdek and S. K. Pal Editors. Fuzzy Models for Pattern Recognition. IEEE Press, Boca Raton, 1992.Google Scholar
  24. 24.
    Y. H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison Wesley, New York, 1989.MATHGoogle Scholar
  25. 25.
    G. Carpenter and S. Grossberg. ART-2: Self organization of stable category recognition codes for analog input patterns. Appl. Opt., 26:4919–4930, 1987.CrossRefGoogle Scholar
  26. 26.
    G. Carpenter and S. Grossberg. ART-3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Net­works, 3:129–152, 1990.CrossRefGoogle Scholar
  27. 27.
    J. A. Hartigan. Clustering Algorithms. John Wiley and Sons, New York, 1975.MATHGoogle Scholar
  28. 28.
    S. K. Pal and S. Mitra. Fuzzy dynamic clustering algorithm. Pattern Recogni­tion Letters, 2:5250–535, 1990.Google Scholar
  29. 29.
    A. Ghosh, N. R. Pal, and S. K. Pal. Self-organization for object extraction using a multilayer neural network and fuzziness measure. IEEE Trans. Fuzzy Syst, 1:54–68, 1993.CrossRefGoogle Scholar
  30. 30.
    A. Ghosh and S.K. Pal. Neural network, self-organization and object extraction. Pattern Recognition Letters, 13, 1992.Google Scholar
  31. 31.
    A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, Norwell, 1995.Google Scholar
  32. 32.
    S. Mitra and S. Y. Yang. High fidelity adaptive vector quantization at very low bit rates for progressive transmission of radiographic images. Electronic Imaging, 8(l):23–35, 1999.CrossRefGoogle Scholar
  33. 33.
    NASoftware. United Kingdom, 1997.
  34. 34.
    Synthetic Aperture Radar Index, Sandia National Laborato­ries, 1999.
  35. 35.
    G. Zamora, M. Dickens, and S. Mitra. A robust registration technique for multi-sensor images. Proc. Southwest Symp. Image Analysis. Interp., pages 87–90, 1998.Google Scholar
  36. 36.
    W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, New York, 1993.Google Scholar
  37. 37.
    J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Processing, 41(12):3445–3462, 1993.CrossRefMATHGoogle Scholar
  38. 38.
    K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 86(11):2210–2239, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sunanda Mitra
    • 1
  • Ramiro Castellanos
    • 1
  • Su-Yu Yang
    • 1
  • Surya Pemmaraju
    • 2
  1. 1.Department of Electrical EngineeringTexas Tech UniversityLubbockUSA
  2. 2.Polairod CorporationNewtonUSA

Personalised recommendations