Skip to main content

Neural Systems for Motion Analysis: Single Neuron and Network Approaches

  • Chapter
Soft Computing for Image Processing

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 42))

Abstract

This chapter employs large-scale computer simulations to investigate properties of the visual cortex, in particular the motion pathway. We have modeled the direction and orientation sensitive portions of the pathway using a biological model of the dendritic structure of a neuron and with a Jordan-Elman recurrent network. While biologically motivated, our study is not meant to imply a functional underlying architecture based on our simulations, but to provide a computational system for possible use in machine vision applications. The construction and simulation of large-scale neuronal networks using simplified models is governed by the tradeoff between biological fidelity for a full model and the decrease in computational complexity for the simplified one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajjimarangsee, P. and T. L. Huntsberger (1988). Neural network model for the fusion of visible and thermal infrared sensor output. In Proc. SPIE Sympos. Sesnor Fusion I: Spatial Reasoning and Scene Interpretation, Volume 1003, Cambridge, MA, pp. 153–160.

    Google Scholar 

  2. Beck, J. (1972). Surface Color Perception. Ithaca, NY: Cornell University Press.

    Google Scholar 

  3. Bower, J. M. and D. Beeman (1995). The Book of GENESIS. Santa Clara, CA: Springer-Verlag/TELOS.

    Book  MATH  Google Scholar 

  4. Broida, T. and R. Chellappa (1991). Estimating the kinematics and structure of a rigid object from a sequence of monocular images. IEEE Transactions on Pattern Analysis and Machine Intelligence13, 497–513.

    Article  Google Scholar 

  5. Connor, J. A. and C. F. Stevens (1971). Prediction of repetitive firing behavior from voltage clamp data on an isolated neuron soma. J. Physiology (London) 213, 31–54.

    Google Scholar 

  6. Creutzfeldt, O. D. and H. C. Nothdurft (1978). Representation of complex visual stimuli in the brain. Naturwissenschaften65, 307–318.

    Article  Google Scholar 

  7. DeAngelis, G. C, I. Ohzawa, and R. D. Freeman (1993a). Spatiotem-poral organization of simple-cell receptive fields in the cat’s striate cortex. I: General characteristics and postnatal development. Journal of Neurophysiology69, 1091–1117.

    Google Scholar 

  8. DeAngelis, G. C, I. Ohzawa, and R. D. Freeman (1993b). Spatiotem-poral organization of simple-cell receptive fields in the cat’s striate cortex. II: Linearity of spatial and temporal summation. Journal of Neurophysiology69, 1118–1135.

    Google Scholar 

  9. Eccles, J. C. (1957). The Physiology of Nerve Cells. New York: Academic Press.

    Google Scholar 

  10. Ellman, J. (1990). Finding structure in time. Cognitive Science14, 179–211.

    Article  Google Scholar 

  11. Faugeras, O. D. and K. E. Price (1981). Semantic description of aerial images using stochastic labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence3, 633–642.

    Article  Google Scholar 

  12. Fukushima, K. (1987). Neural network model for selective attention in visual pattern recognition and associate recall. Applied Optics26, 4985–4992.

    Article  Google Scholar 

  13. Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston, MA: Houghton Mifflin Co.

    Google Scholar 

  14. Goris, R. C. and S. Terashima (1973). Central response to infrared stimulation of the pit receptors in a Crotaline snake, trimeresurus flavoviridis. Journal of Experimental Biology58, 59–76.

    Google Scholar 

  15. Grossberg, S. (1987). Cortical dynamics of three-dimensional form, color, and brightness perception, I: Monocular theory. Perception and Psychophysics41, 87–116.

    Article  Google Scholar 

  16. Grossberg, S. and D. Levine (1987). Neural dynamics of attention-ally modulated Pavlovian conditioning: Blocking, interstimulus interval, and secondary reinforcement. Applied Optics26, 5015–5030.

    Article  Google Scholar 

  17. Grossberg, S. and M. E. Rudd (1989). A neural architecture for visual motion perception: Group and element apparent motion. Neural Networks2(6), 421–450.

    Article  Google Scholar 

  18. Hill, A. V. (1936). Excitation and accomodation in nerve. Proc. Royal Soc. London, Ser. B 119, 305–355.

    Article  Google Scholar 

  19. Hodgkin, A. L. and A. F. Huxley (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiology (London) 117, 500–544.

    Google Scholar 

  20. Hoffman, W. C. (1966). The lie algebra of visual perception. Journal of Mathematical Psychology3, 65–98.

    Article  MATH  Google Scholar 

  21. Holmes, W. R. and W. Rail (1992). Electrotonic models of neuronal dendrites and single neuron computation. In T. McKenna, J. Davis, and S. F. Zornetzer (Eds.), Single Neuron Computation, pp. 7–26. Boston, MA: Academic Press, Inc.

    Google Scholar 

  22. Huntsberger, T. and M. Hilton (1995). Distributed multisensor integration in a cooperative multirobot system. In P. S. Schenker and G. T. McKee (Eds.), Proc. SPIE Symposium on Sensor Fusion and Networked Robotics, Volume 2589, Philadelphia, PA, pp. 134–141.

    Chapter  Google Scholar 

  23. Huntsberger, T. and J. Rose (1997). Computer simulation of bimodal neurons and networks: Integrating infrared and visual stimuli. In S. S. Iyengar (Ed.), A Computational Paradigm for Synthesizing Models and Simulations of Complex Biological Systems. Boca Raton, FL: CRC Press.

    Google Scholar 

  24. Huntsberger, T. L. (1990). Comparison of techniques for disparate sensor fusion. In Proc. SPIE Sympos. Sensor Fusion III: 3-D Perception and Recognition, Volume 1383, Boston, MA, pp. 589–595.

    Google Scholar 

  25. Huntsberger, T. L. (1992a). Data fusion: A neural networks implementation. In M. A. Abidi and R. C. Gonzalez (Eds.), Data Fusion in Robotics and Machine Intelligence. Orlando, FL: Academic Press.

    Google Scholar 

  26. Huntsberger, T. L. (1992b). Sensor fusion in a dynamic environment. In P. S. Schenker (Ed.), Proc. SPIE Symposium on Sensor Fusion V, Volume 1828, Boston, MA, pp. 175–182.

    Chapter  Google Scholar 

  27. Huntsberger, T. L. (1995). Biologically motivated cross-modality sensory fusion system for automatic target recognition. Neural Networks 8(7/8), 1215–1226.

    Article  Google Scholar 

  28. Huntsberger, T. L. (1996). Hybrid teleoperated/cooperative multi-robot system for complex retireval operations. In P. S. Schenker and G. T. McKee (Eds.), Proc. SPIE Symposium on Sensor Fusion and Distributed Robotic Agents, Boston, MA, pp. 11–17.

    Chapter  Google Scholar 

  29. Huntsberger, T. L. (1997). Autonomous multirover system for complex planetary retrieval operations. In P. S. Schenker and G. T. McKee (Eds.), Proc. SPIE Symposium on Sensor Fusion and Decentralized Control in Autonomous Robotic Systems, Pittsburgh, PA, pp. 221–227.

    Google Scholar 

  30. Huntsberger, T. L. (1998). Fault tolerant action selection for planetary rover control. In P. S. Schenker and G. T. McKee (Eds.), Proc. SPIE Symposium on Sensor Fusion and Decentralized Control in Autonomous Robotic Systems, Boston, MA. to appear.

    Google Scholar 

  31. Huntsberger, T. L. and P. Ajjimarangsee (1990). Parallel self-organizing feature maps for unsupervised pattern recognition. International Journal of General Systems16, 357–372. Also reprinted in Fuzzy Models for Pattern Recognition, (Eds. J. C. Bezdek, S. K. Pal), IEEE Press, Piscataway, NJ, 1992, pp. 483–495.

    Google Scholar 

  32. Huntsberger, T. L. and S. N. Jayaramamurthy (1987). Determination of the optic flow field using the spatiotemporal deformation of region properties. Pattern Recogition Letters6, 169–177.

    Article  Google Scholar 

  33. Huntsberger, T. L. and S. N. Jayaramamurthy (1988). Determination of the optic flow field in the presence of occlusion. Pattern Recognition Letters8, 325–333.

    Article  Google Scholar 

  34. Huntsberger, T. L. and J. Rose (1998). B ISM ARC: A Biologically Inspired System for Map-based Autonmous Rover Control. Neural Networks, in press.

    Google Scholar 

  35. Hutchinson, J., C. Koch, J. Luo, and C. Mead (1988). Computing motion using analog and binary resistive networks. IEEE Computer 21 (3), 52–64.

    Article  Google Scholar 

  36. Jain, R. (1983). Dynamic scene analysis. In Kanal and Rosenfeld (Eds.), Progress in Pattern Recognition. North Holland.

    Google Scholar 

  37. Jerian, C. and R. Jain (1990). Polynomial methods for structure from motion. IEEE Transactions on Pattern Analysis and Machine Intelligence12, 1150–1166.

    Article  Google Scholar 

  38. Jordan, M. J. (1986). Attractor dynamics and parallelism in a con-nectionist sequential machine. In Proc. Eighth Ann Conf. of Cognitive Science Society, pp. 531–546.

    Google Scholar 

  39. Katz, B. (1969). The Release of Neural Transmitter Substances. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  40. Kernell, D. (1968). The repetitive impulse discharge of a simple neuron model compared to that of spinal motoneurons. Brain Research11, 685–687.

    Article  Google Scholar 

  41. Kikuchi, M. and K. Fukushima (1996). Neural network model of the visual system: Binding form and motion. Neural Networks9, 1417–1427.

    Article  MATH  Google Scholar 

  42. Koch, C. and S. Ullman (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology4, 219–227.

    Google Scholar 

  43. Kolers, P. A. and M. von Grunau (1976). Shape and color in apparent motion. Vision Research16, 329–335.

    Article  Google Scholar 

  44. MacGregor, R. J. (1987). Neural and Brain Modeling. San Diego, CA: Academic Press, Inc.

    MATH  Google Scholar 

  45. Marr, D. and S. Ullman (1981). Directional selectivity and its use in early visual processing. Proc. of the Royal Society of London (B)211, 151–180.

    Article  Google Scholar 

  46. Marshall, J. A. (1990). Self-organizing neural networks for perception of visual motion. Neural Networks3, 45–74.

    Article  Google Scholar 

  47. Mascagni, M. V. (1992). Numerical methods for neuronal modeling. In C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling, pp. 439–484. Cambridge, MA: MIT Press.

    Google Scholar 

  48. McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.5, 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  49. Minsky, M. (1967). Computation: Finite and Infinite Machines. En-glewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  50. Movshon, J. A., E. H. Adelson, M. S. Gizzi, and W. T. Newsome (1985). The analysis of moving visual patterns. In C. Chagas, R. Gat-tass, and C. Gross (Eds.), Pattern Recognition Mechanisms (Pontificiae Academiae Scientarum Scripta Varia, 4$), pp. 117–151. Vatican Press, Rome.

    Google Scholar 

  51. Nothdurft, H. C. and B. B. Lee (1982). Responses to colored patterns in the Macaque LGN: Pattern processing in single neurones. Experimental Brain Research48, 43–54.

    Google Scholar 

  52. Ohlander, R., K. Price, and D. R. Reddy (1978). Picture segmentation using a recursive region splitting method. Comput. Graphics Image Processing8, 313–333.

    Article  Google Scholar 

  53. Rail, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal9, 1483–1508.

    Article  Google Scholar 

  54. Rail, W. (1977). Core conductor theory and cable properties of neurons. In E. R. Kandel (Ed.), Handbook of Physiology (Sect. 1): The Nervous System I. Cellular Biology of Neurons, pp. 39–97. Baltimore, MD: American Physiological Society.

    Google Scholar 

  55. Seibert, M. and A. M. Waxman (1989). Spreading activation layers, visual saccades, and invariant representations for neural pattern recognition systems. Neural Networks 2(1), 9–27.

    Article  Google Scholar 

  56. Shariat, H. and K. E. Price (1990). Motion estimation with more than two images. IEEE Transactions on Pattern Analysis and Machine Intelligence12, 417–434.

    Article  Google Scholar 

  57. Shepherd, G. M. (1979). The Synaptic Organization of the Brain, 2nd Ed. New York: Oxford University Press.

    Google Scholar 

  58. Shepherd, G. M. (1992). Canonical neurons and their computational organization. In T. McKenna, J. Davis, and S. F. Zornetzer (Eds.), Single Neuron Computation, pp. 27–60. Boston, MA: Academic Press, Inc.

    Google Scholar 

  59. Simoncelli, E. P. (1993). Distributed representation and analysis of visual motion. Technical Report 209, MIT Media Lab, Cambridge, MA.

    Google Scholar 

  60. Soh, Y. S. (1989). Dynamic Scene Analysis. Ph. D. thesis, Department of Computer Science, University of South Carolina, Columbia, SC.

    Google Scholar 

  61. Terashima, S. and Y. Liang (1991). Temperature neurons in the Cro-taline trigeminal ganglia. Journal of Neurophysiology66, 623–634.

    Google Scholar 

  62. Traub, R. D. and R. Miles (1991). Neuronal Networks of the Hippocampus.New York: Cambridge University Press.

    Book  Google Scholar 

  63. Treisman, A. M. (1980). A feature-integration theory of attention. Cognitive Psychology12, 97–136.

    Article  Google Scholar 

  64. Tsao, T.-R., H.-J. Shyu, J. Libert, and V. Chen (1991). A Lie group approach to a neural system for three-dimensional interpretation of visual motion. IEEE Transactions on Neural Networks2, 149–155.

    Article  Google Scholar 

  65. Wiesel, T. N. and D. H. Hubel (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal Neurophysiology29, 1115–1156.

    Google Scholar 

  66. Wilson, C. J. (1992). Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons. In T. McKenna, J. Davis, and S. F. Zornetzer (Eds.), Single Neuron Computation, pp. 141–172. Boston, MA: Academic Press, Inc.

    Google Scholar 

  67. Wilson, M. A. and J. M. Bower (1992). The simulation of large-scale neural networks. In C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling, pp. 291–333. Cambridge, MA: MIT Press.

    Google Scholar 

  68. Zeki, S. (1993). A Vision of the Brain. London: Blackwell Scientific Publications.

    Google Scholar 

  69. Zeki, S. and S. Shipp (1988). The functional logic of cortical connections. Nature335, 311–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huntsberger, T.L., Rose, J.R., Girard, D. (2000). Neural Systems for Motion Analysis: Single Neuron and Network Approaches. In: Pal, S.K., Ghosh, A., Kundu, M.K. (eds) Soft Computing for Image Processing. Studies in Fuzziness and Soft Computing, vol 42. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1858-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1858-1_20

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2468-1

  • Online ISBN: 978-3-7908-1858-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics