Soft Computing and Image Analysis

  • Vito Di Gesu
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 42)


The paper describes a soft approach to solve image analysis problems. Theory of fuzzy-sets has been used to implement most of the algorithms described in the paper. Soft approaches can be useful to extend mathematical morphology operators on gray level images and to describe the shape of dotted objects. Examples on real data are also provided.


Binary Image Soft Computing Medial Axis Mathematical Morphology Morphological Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloch I., Maitre H. (1995): Fuzzy mathematical morphologies: a comparative study, Pattern Recognition, Vol.28, no.9, pp.1341–1357.MathSciNetCrossRefGoogle Scholar
  2. Borgefors G. (1987): Distance transformation in hexagonal grids, in Image Analysis and Processing, V. Cantoni, V. Di Gesu and S. Levialdi (eds.), Plenum Press, pp.213–220.Google Scholar
  3. Chang S.S.L. and Zadeh L.A. (1972): Fuzzy mapping and control, IEEE Trans.Syst., Man, Cybern., vol.SMC-2, pp.30–34.MathSciNetGoogle Scholar
  4. Chi Z., Yan H., and Pham T. (1996): Fuzzy algorithms: with applications to image processing and pattern recognition, Singapore, World Scientific.MATHCrossRefGoogle Scholar
  5. De Baets B., Kerre E. (1993): An introduction to fuzzy mathematical morphology, Proc. NAFIPS’93, pp.129–133.Google Scholar
  6. De Baets B. (1995): Idempotent closing and opening operations in fuzzy mathematical morphology, Proc. ISUMA-NAFIPS’95, (B. Ayyub, ed.), IEEE Computer Society Press, pp.228–233.Google Scholar
  7. De Luca A. , Termini S. (1972): A definition of a non-probabilistic entropy in the setting of fuzzy set theory, Information and Control, Vol.20, p.301–322.MathSciNetMATHCrossRefGoogle Scholar
  8. Di Gesu V., Maccarone M.C. (1986): Feature Selection and Possibility Theory, Journal of Pattern Recognition, Vol.19, no.l, pp.63–72.CrossRefGoogle Scholar
  9. Di Gesu V., Maccarone M.C, Tripiciano M. (1993): Mathematical morphology based on fuzzy operators, Fuzzy Logic: State of the Art, R. Lowen and M. Roubens (Eds.), Kluwer Academic Publ., pp.477–486.CrossRefGoogle Scholar
  10. Di Gesu V., Maccarone M.C. (1984): A method to classify spread shapes based on the possibility theory, Proceedings of the SeventhInternational Conference on Pattern Recognition, IEEE Comp.Soc, Montreal, CanadaGoogle Scholar
  11. Kanizsa G. (1955): Margini quasi percettivi in campi con stimolazione omogenea, Rivista di Psicologia, Vol.49, no.l, pp.7–30.Google Scholar
  12. IEEE (1992) Special Issue on fuzzy logic and neural networks, IEEE Trans, on Neural Network, Vol.3.Google Scholar
  13. Ishibuchi H., Nozakki K., Yanamoto N., Tanaka H. (1994): Construction of Fuzzy Classification Systems with Rectangular Fuzzy Rules Using Genetic Algorithm, Fuzzy Sets and Systems, Vol.65, no.2/3, pp.237–253.Google Scholar
  14. Maccarone M.C, Di Gesu V., Tripiciano M. (1995): An algorithm to compute medial axis of fuzzy images, Proc. 9thSCIA-IAPR, G. Borgerfors (Ed.), Vol.1 pp.525–530.Google Scholar
  15. Maragos P., Ziff R.D. (1990): Threshold superposition in morphological image analysis system, IEEE Trans, on PAMI, Vol.12, no.5, pp.498–503.CrossRefGoogle Scholar
  16. Negoita CV. (1985): Expert systems and fuzzy systems, The Benjamin/Cumming Publishing Company, N.Y..Google Scholar
  17. Jiang Q., Li J., Song J. (1997): A further investigation for fuzzy measures on metric spaces, in Proc.IFSA’97, pp.9–12.Google Scholar
  18. Pal S.K., King R.A. (1983): On edge detection of X-ray images using fuzzy sets, IEEE Trans.of PAMI, Vol.5, pp.69–77.CrossRefGoogle Scholar
  19. Pal S.K., Rosenfeld A. (1991), A fuzzy medial axis transformation based on fuzzy disks, Patt. Rec. Letters, Vol.12, pp.585–592.CrossRefGoogle Scholar
  20. Robinson L.R. (1988): Instrumentation for Ground-Based Optica Astronomy, Springer-Verlag, N.Y..CrossRefGoogle Scholar
  21. Rosenfeld A., Kak A.C. (1976): Digital picture processing, NY, Academic Press.CrossRefGoogle Scholar
  22. Pal S.K., Dutta Majumder D.K. (1986): Fuzzy mathematical approach to pattern recognition, Wiley, A.Halsted Press Book, N.Y..MATHGoogle Scholar
  23. Serra J. (1982): Image Analysis and Mathematical Morphology, Academic Press, New York.MATHGoogle Scholar
  24. Sternberg S.R. (1986): Grayscale morphology, Compu.Vision Graph. Image Process., Vol.35, pp.333–348.Google Scholar
  25. Thonnat M. (1988), Toward an automated classification of galaxies, Le monde des galaxies, PHYSICS, Springer-Verlag, NY Inc.Eds.Google Scholar
  26. Sombe L. (1990): Reasoning under incomplete information in artificial intelligence, Wiley Professional Compting, N.Y..Google Scholar
  27. Weber A.G. (1988): USC-SIPI Image Data Base, USC-SM Report 101, Univ. of South California, Los Angeles, CA.Google Scholar
  28. Zadeh L. (1965): Fuzzy sets, Information and Control, Vol.8, pp.338–353.MathSciNetMATHCrossRefGoogle Scholar
  29. Zadeh L.A. (1994): Fuzzy logic, neural networks, and soft computing, Communication of the ACM., Vol.37, no.3, pp.77–84.MathSciNetCrossRefGoogle Scholar
  30. Yager R. R. (1980): A Foundation for a theory of possibility, Journal of Cybernetics, Vol.10, pp. 177–204.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Vito Di Gesu
    • 1
  1. 1.Dipartimento di Matematica ed ApplicazioniUniversita di PalermoPalermoItaly

Personalised recommendations